
 __
Mesquite Software How CSIM for Java Works Page 1

Mesquite Software’s CSIM for Java –
A Step-by-Step Explanation

By Herb Schwetman

Acknowledgements

The initial implementation of CSIM for Java was done by Conor Davis, based on Mesquite
Software’s CSIM 19 simulation toolkit for C and C++ developers.

Goals

CSIM for Java was written to allow Java programmers to quickly and easily code their
discrete event simulations using the CSIM toolkit. Specifically, the goals for CSIM for Java
are as follows:

• Provide all CSIM functionality using the Java programming language, with the same high
standards of stability and quality that users expect from CSIM 19

• Feel natural to Java programmers

• Use standard Java constructs and tools

• Execute efficiently

This document gives a detailed explanation of the steps involved in the execution of a CSIM
for Java model. It is intended to help the model builder, as he/she creates and debugs a
simulation model. The explanation uses a sample program to illustrate the key points.

A Sample Program

1 // Generic application: Simple.java
2
3 import com.mesquite.csim.*;
4 import com.mesquite.csim.Process;
5 import com.mesquite.csim.file.Files;
6 import java.io.*;
7
8 public class Simple extends Model {
9 public static void main(String args[]) {
10 Simple model = new Simple();
11 model.enableTrace(true);
12 model.run();
13 }
14 public Simple() {
15 super("Simple");
16 }
17 public void run() {
18 start(new Sim());

 __
Mesquite Software How CSIM for Java Works Page 2

19 }
20
21 private class Sim extends Process {
22 public Sim() {
23 super("Sim");
24 }
25 public void run() {
26 add(new Gen());
27 hold(2.0);
28 }
29 }
30
31 private class Gen extends Process {
32 public Gen() {
33 super("Gen");
34 }
35 public void run() {
36 while(true) {
37 add(new Job());
38 hold(rand.exponential(2.0));
39 }
40 }
41 }
42
43 private class Job extends Process {
44 public Job() {
45 super("Job");
46 }
47 public void run() {
48 hold(rand.exponential(1.0));
49 }
50 }
51 }

Trace Output
 time process id pri status
 1 0.000 Sim 1 1 create Sim 1
 2 0.000 Sim 1 1 sched proc: t = 0.000, id = 2
 3 0.000 Sim 1 1 create Gen 2
 4 0.000 Sim 1 1 hold for 2.000
 5 0.000 Sim 1 1 sched proc: t = 2.000, id = 1
 6 0.000 Gen 2 1 sched proc: t = 0.000, id = 3
 7 0.000 Gen 2 1 create Job 3
 8 0.000 Gen 2 1 hold for 1.332
 9 0.000 Gen 2 1 sched proc: t = 1.332, id = 2
 10 0.000 Job 3 1 hold for 1.739
 11 0.000 Job 3 1 sched proc: t = 1.739, id = 3
 12 1.332 Gen 2 1 sched proc: t = 0.000, id = 4
 13 1.332 Gen 2 1 create Job 4
 14 1.332 Gen 2 1 hold for 2.351
 15 1.332 Gen 2 1 sched proc: t = 2.351, id = 2
 16 1.332 Job 4 1 hold for 0.626
 17 1.332 Job 4 1 sched proc: t = 0.626, id = 4
 18 1.739 Job 3 1 terminate process
 19 1.958 Job 4 1 terminate process

 __
Mesquite Software How CSIM for Java Works Page 3

 20 2.000 Sim 1 1 terminate process
 21 2.000 Sim 1 1 halt simulation
Execution time: 0.11

Sequence of Methods, etc.

main() Line 9 – As with all Java applications, the main() method of Simple is the starting
point. Simple extends the Model class (more on this later).

 Line 10 – creates a new instance of Simple, called Model.
 Line 11 – enables (turns on) trace mode; trace mode causes a file of CSIM

actions to be written

 Line 12 – calls the run method for the Model object (Line 17)

 Line 17 – “starts” the model with the Sim process; this line first instantiates a Sim
object (Sim extends Process, so this creates a new Sim process). After a new Sim is
created, this process is “started.” Note: only the first process is started; all subsequent
processes are “added”. The model.start() method initializes the runtime environment
and then “adds” this instance of Sim() to the environment. Adding a process to
the environment schedules the process to become “active” now (in simulated
time). A process is assigned to a Java thread (from a pool of Java threads). The
start method then activates the new process Sim.run() and waits for the model to
“end”.

Sim.run Line 26 – this instruction instantiates a new instance of the Gen process and then
adds this instance to the environment (really, this instruction puts this instance of
Gen on the “next event list,” which is used to order the process “resumes” for all
of the processes in the model (see below).

 Line 27 – the hold statement refers to the hold method in the Sim Process object;
the hold(t) method “schedules” this process to be “resumed” in t units of time in
the future, which is the point in time defined by the current value of the
simulation clock (model.clock) plus the value of t. The hold method then calls the
suspend_and_fire() method; this instruction activates the next process and then
suspends itself by executing the Java-thread-wait method.

 Model maintains a list of waiting processes ordered by the time each process will
be “resumed” – the next-event list. The nextEvent method removes the process
at the head of this list, sets the clock to the time for this process activation, and
the does notifyAll for this process.

 Note: According the trace output, the value of the clock is still 0.000 (line 4), and the next-
event list is as follows:
 - Gen, to resume at 0.000
 - Sim, to resume at 2.000

Gen.run Line 35 – the run method for the Gen process is the “code” for Gen. This code
consists of a while loop that executes “forever” (really until the model ends). In
every iteration of this While loop, Gen adds one new instance of the Job class (a job
process – called Job.3) and then holds for an amount of time determined by the
rand.exponential(2.0) function (Line 38). According to the trace, during the first

 __
Mesquite Software How CSIM for Java Works Page 4

iteration of the loop, the time for the hold is 1.332 units of time (line 8). The
next-event list is as follows:
 - Job.3, to resume at 0.000
 - Gen, to resume at 1.322
 - Sim, to resume at 2.000

Job.3.run Line 48 – The code for the Job.3 process consists of one statement –
hold(rand.exponential(1.0)). According to the trace output, the value for the hold
statement is 1.739 – line 10. After the hold statement, the Gen process is
suspended.

 At this point, the value of the clock is 0.000 and there are three processes doing
hold statements:
 - Gen, to resume at 1.332
 - Job.3, to resume at 1.739
 - Sim, to resume at 2.000

 Since Gen is the next process to resume, the clock will advance to 1.332 and Gen
will be come active

Gen.run Line 37 – when Gen becomes active again (resumes), it “adds” another instance
of the Job process (Job.4) – line 13;

 Line 38 – Gen does another hold(); this time the value for the hold is 2.351 (line
14); the time it will be resumed is 1.332 + 2.351 = 3.683.

 At this point, the value of the clock is 1.332 and there are three processes doing
hold statements:
 - Job.4, to resume at 1.332 (now)
 - Job.3, to resume at 1.739
 - Sim, to resume at 2.000
 - Gen, to resume at 3.683

Job.4.run Line 48 – Job.4 starts and executes the hold statement; this time, the value for the
hold is 0.626. Job.4 is scheduled to resume at time = 1.332 + 0.669 = 1.958, and
suspends. The clock is 1.332, and the next event list is as follows:
 - Job.3, to resume at 1.739
 - Job.4, to resume at 1.958
 - Sim, to resume at 2.000
 - Gen, to resume at 3.683

Job.3.run Line 49 – The clock is now 1.739 (line 18); Job.3 resumes, and the process
terminates. Note: A process automatically terminates when the run method ends. When
Job.3 terminates, the process ends, and the next process on the next-event list will
be resumed. The clock is 1.739, and the next-event list is as follows:
 - Job.4, to resume at 1.958
 - Sim, to resume at 2.000
 - Gen, to resume at 3.683

Job.4.run Line 49 – The clock is now 1.958 (line 19); Job.4 resumes, and the process
terminates. When Job.4 terminates, the process ends, and the next process on the
next-event list will be resumed. The clock is 1.958, and the next-event list is as
follows:

 __
Mesquite Software How CSIM for Java Works Page 5

 - Sim, to resume at 2.000
 - Gen, to resume at 3.683

Sim.run Line 28 – Sim becomes the active process (line 20). When Sim ends (terminates),
this is a special case (process id is 1), and the model halts (line 21). When the
model halts, the model.run (Line 12) completes. In this example, there are no
statements after the model.run statement, so the program completes.

If you have any further questions about CSIM for Java operation, please consult our online
documentation at www.mesquite.com/documentation or contact us at Mesquite Software at
info@mesquite.com or +1 512.338.9153.

CSIM 19 is a trademark of Mesquite Software. Java is a registered trademark of Sun Microsystems, Inc.

