

User’s Guide

CSIM for Java
Simulation Engine

April 2006

Mesquite Software, Inc.
P.O. Box 26306

Austin, TX 78755-0306
+ 1 (512) 338-9153

Internet: info@mesquite.com

 Table of Contents

 i

Table of Contents

Table of Contents...i

Preface ... vii
CSIM for Java Functionality..viii
Typographical Conventions ...x
System Requirements and Supported Platforms ..xi
Installation..xi

Command Line ..xi
Eclipse ...xiii
NetBeans...xiii

Support and Contact Information... xiv

1. Introduction ...1
1.1. Java Implementation of CSIM... 2
1.2. CSIM Objects and the Model Object.. 2
1.3. Syntax Notes .. 3
1.4. Import Files .. 4

2. Simulation Time ..7
2.1. Choosing a Time Unit.. 7
2.2. Retrieving the Current Time.. 8
2.3. Delaying for an Amount of Time... 9
2.4. Advancing Time...10
2.5. Displaying the Time...11
2.6. Integer-Valued Simulation Time..11

3. Processes..13
3.1. Initiating a Process...14
3.2. The model.add and model.start Methods ..14
3.3. The Structure of a Process ...15
3.4. Process Operation ...16

Table of Contents

 ii

3.5. Terminating a Process..17
3.6. Changing the Process Priority ...17
3.7. Inspector Functions..18

4. Facilities...17
4.1. Declaring and Initializing a Facility..18
4.2. Using a Facility..18
4.3. Reserving and Releasing a Facility..19
4.4. Producing Reports ...21
4.5. Resetting a Facility...22
4.6. Declaring and Initializing a Multi -server Facility..............................22
4.7. Releasing a Specific Server at a Facility..23
4.8. An Array of Facilities ...24
4.9. Reserving a Facility with a Time-out ...25
4.10. Specifying the Service Discipline at a Facility................................25
4.11. Collecting Class-Related Statistics ..28
4.12. Inspector Methods ..28
4.13. Status Report...31

5. Storages...33
5.1. Declaring and Initializing Storage..33
5.2. Allocating from a Storage..34
5.3. Deallocating from a Storage Unit ..34
5.4. Producing Reports ...35
5.5. Resetting a Storage Unit...36
5.6. An Array of Storages ...36
5.7. Allocating Storage with a Time-out..37
5.8. Inspector Methods ..38
5.9. Reporting Storage Status..39

6. Buffers ...41
6.1. Declaring and Initializing a Buffer..42
6.2. Putting Tokens into a Buffer..42
6.3. Getting Tokens from a Buffer..43
6.4. Producing Reports ...44
6.5. Resetting a Buffer...44
6.6. Timed Operations for Buffers ...45
6.7. Inspector Functions..45

 Table of Contents

 iii

6.8. Reporting Buffer Status ...46

7. Events ..47
7.1. Declaring and Initializing an Event..47
7.2. Waiting for an Event to Occur..48
7.3. Waiting with a Time-Out..49
7.4. Queueing for an Event to Occur ...49
7.5. Queueing with a Time-out...50
7.6. Setting an Event..50
7.7. Clearing an Event...51
7.8. Collecting and Reporting Statistics for Events................................52
7.9. Resetting an Event...53
7.10. Event Sets ..53
7.11. Inspector Methods ..55
7.12. Status Report...56
7.13. Built-In Events..57

8. Mailboxes...58
8.1. Declaring and Initializing a Mailbox...58
8.2. Sending a Message...59
8.3. Receiving a Message ..60
8.4. Receiving a Message with a Time-out ...60
8.5. Collecting and Reporting Statistics for Mailboxes..........................61
8.6. Resetting a Mailbox..62
8.7. Inspector Methods ..62
8.8. Status Report...63

9. Managing Queues ..65
9.1. Process Objects and Process Structures65
9.2. Process Queues at Facilities ...67
9.3. Process Queues at Storages...68
9.4. Process Queues at Buffers ..69
9.5. Process Queues at Events ...72
9.6. Process Queues and Message Lists at Mailboxes74

10. Introduction to Statistics Gathering77

11. Tables ..79
11.1. Declaring and Initializing a Table ..79

Table of Contents

 iv

11.2. Tabulating Values...80
11.3. Producing Reports ...81
11.4. Histograms..82
11.5. Confidence Intervals ..84
11.6. Inspector Methods ..85
11.7. Resetting a Table ...87

12. Qtables...89
12.1. Declaring and Initializing a Qtable...90
12.2. Noting a Change in Value...90
12.3. Producing Reports ...91
12.4. Histograms..92
12.5. Confidence Intervals ..94
12.6. Inspector Methods ..94
12.7. Resetting a Qtable..97

13. Meters..99
13.1. Declaring and Initializing a Meter...99
13.2. Instrumenting a Model ...100
13.3. Producing Reports ...101
13.4. Histograms..102
13.5. Confidence Intervals ..102
13.6. Inspector Methods ..103
13.7. Resetting a Meter..104

14. Boxes...105
14.1. Declaring and Initializing a Box..105
14.2. Instrumenting a Model ...106
14.3. Producing Reports ...107
14.4. Histograms..108
14.5. Confidence Intervals ..109
14.6. Inspector Methods ..109
14.7. Resetting a Box...110

15. Advanced Statistics Gathering.................................111
15.1. Example: Instrumenting a Facility..111
15.2. The Report Function...113
15.3. Resetting Statistics ..113

 Table of Contents

 v

16. Confidence Intervals and Run Length Control......115
16.1. Confidence Intervals ..115
16.2. Inspector Functions..118
16.3. Run Length Control ..119
16.4. Caveats...122

17. Process Classes...123
17.1. Declaring and Initializing Process Classes123
17.2. Using Process Classes ..124
17.3. Producing Reports ...124
17.4. Resetting Process Classes ...125
17.5. Inspector Methods ..126

18. Random Numbers...127
18.1. Single Stream Random Number Generation128
18.2. Changing the Seed of the Single (Default) Stream....................129
18.3. Single versus Multiple Streams...130
18.4. Managing Multiple Streams..131
18.5. Multiple Stream Random Number Generation...........................132

19. Output from CSIM and the Model Class..................133
19.1. The Model Class...133
19.2. Generating Reports..135

19.2.1. Partial Reports..135
19.2.2. Complete Reports..136
19.2.3. To Change the Model Name:...137

19.3. CSIM Report Output..138
19.3.1. Report_Hdr Output...139
19.3.2. Report_Facilities Output...140
19.3.3. Report_Storages Output...141
19.3.4. Report_Buffers Output...142
19.3.5. Report_Classes Output...143
19.3.6. Report_Events Output...144
19.3.7. Report_Mailboxes Output...145
19.3.8. Report_Tables Output...146
19.3.9. Report_Qtables Output...147

Table of Contents

 vi

19.3.10. Report_Meters Output...149
19.3.11. Report_Boxes Output..149

19.4. Redirecting Output Files..150
19.5. Generating Status Reports ...150

19.5.1. Partial Reports..151
19.5.2. Complete Reports..152

20. Tracing Simulation Execution...................................153
20.1. Tracing all State Changes ..153
20.2. Format of Trace Messages...154
20.3. What Is and Is Not Traced...154
20.4. Redirecting Trace Output..155

21. MISCELLANEOUS..157
21.1. Real Time...157

21.1.1. To Retrieve the Current Real Time:..157
21.1.2. To Retrieve the Amount of CPU Time Used by the Model:158

21.2. Creating a CSIM Program ...158
21.3. Rerunning or Resetting a CSIM Model...159

21.3.1. To Rerun a CSIM Model:...160
21.3.2. To Clear Statistics without Rerunning the Model:.................160

21.4. Error Handling...161
21.5. Output File Selection..161

21.5.1. To Change the Stream to which a Given Type of Output is
Sent: 161

21.6. Running Java for CSIM Programs...162

22. Error Messages..163
22.1. Runtime Exceptions ...163
22.2. Illegal State Exceptions ...164
22.3. Print Message and Exit..164

23. Acknowledgments ..165

24. List of References..167

25. Sample Program...171

 Table of Contents

 vii

26. Reserved Words, Structures, and More175
26.1. Statement and Reserved Words ...175

CSIM 19 is a trademark of Mesquite Software. Java is a trademark of Sun Microsystems, Inc.

 Preface

 vii

Preface

Welcome to CSIM for Java, based on Mesquite Software’s CSIM 19
simulation software for the C and C++ programming languages.
CSIM has been helping C and C++ programmers build fast, efficient
discrete-event simulations for more than 20 years, and is now
available for Java programmers.

Used by thousands of customers worldwide, CSIM is a fully
functional, proven software toolkit for programmers who need to
simulate the performance of process-oriented, event-based
systems. CSIM’s powerful simulation capabilities benefit
programmers, groups, departments, managers, and companies by
enabling the evaluation of large, complex systems, thus improving
system design and operation.

CSIM provides several key benefits over other simulation solutions:

• Flexible standard programming environment – very short
learning curve for programmers, with no proprietary
environment to learn

• Stable, proven software – much faster and less expensive
than building one’s own simulator “from scratch”

• Fast execution, low overhead
• Industrial strength, no inherent limitations – ideal for large

applications (300,000 events plus!)
• Integrates easily with existing code
• Excellent value – $1195 per seat or less

CSIM was originally developed in 1985 at the Microelectronics and
Computer Technology Corporation (MCC) in Austin, Texas. Dr.

Preface

 viii

Herb Schwetman helped develop the original version and acquired
the rights to CSIM when he founded Mesquite Software in 1994.
Since then, thousands of users at major international corporations
and universities have successfully used CSIM to study and develop
complex systems, such as:

• Network Protocols and Systems
• Telecom Communication Systems
• Aerospace and Defense Systems
• Software and Hardware Applications
• Manufacturing and Transportation Processes
• And much more...

This User’s Guide describes how to use CSIM for Java. You can find
the latest and greatest version of this guide, along with additional
helpful information, on the Mesquite Software website at
http://www.mesquite.com/documentation/index.htm.

CSIM for Java Functionality

CSIM for Java is a library of classes, functions, procedures and
header files that enable developers to implement efficient models of
complex systems. The models are written in the Java programming
language. Typically, such a model is used to provide estimates of
the performance of the real (modeled) system. Many times, the
goal is to use the model to "try out" different system configurations
or different workloads or different resource scheduling rules, in order
to find the "best" configuration (or workload or schedule) with
respect to the performance goal.

 Preface

 ix

Many simulation applications involve entities passing through a
system of queues. In CSIM, entities are represented by processes,
and queues are represented by facilities and other simulated
resources. In these models, the complete system is represented
by a collection of simulated resources and a collection of processes
that compete for use of these resources.

CSIM for Java provides the complete infrastructure required to run
discrete-event simulations, including many additional features that
enhance control and save time:

• Facility structures to model resources (servers) and waiting
processes

• Efficient mechanism for creating and destroying processes
• Processes have private data store (memory) and access to

global data
• User has the ability to control the simulated time in which

the code executes
• Built-in threads package and scheduler
• Programmer can specify service discipline (such as FCFS

– first come, first served) and can set process priority at a
facility to control the way processes are scheduled at that
facility

• Storages, buffers, events and mailboxes that support
process activities

• Automatic reports are generated for facilities on many
parameters, such as service time, throughput rate, average
queue length, and average response time. They are also
generated for storages, buffers, events, and mailboxes.
Additional data-gathering can be easily configured.

• Tables and qtables collect data during model execution
• Ability to calculate confidence intervals using the method of

batch means
• Run length control provide a mechanism for running a model

until a desired confidence level has been achieved for a
specified statistic

Preface

 x

• Ability to trace model execution
• Many statistical distribution functions that simulate “real-

life” randomness, such as customer arrival rates, part failure
rates, etc.

CSIM for Java provides these structures so that users can spend
their time designing the model, writing process descriptions and
focusing on the sequence of events. CSIM for Java’s use of a
standard programming language makes it possible to embed
models in other products for flexibility in output, reporting, and user
interaction with processes. For example, models have been
embedded in systems to present information graphically and used
to train people in the operation of the system.

Unlike other simulation software with intricate user interfaces and
proprietary environments, CSIM for Java’s standard programming
environment poses only a slight learning curve to programmers,
integrates easily with existing programs, and executes quickly with
low overhead.

Typographical Conventions

To help distinguish between function names, example code, CSIM
output, and other text, this guide follows the typographical
conventions described in the following table.

Convention Meaning
bold Example and Prototype headers, icon,

tab, and button names
italic Function names, reserved words, key

words being introduced for the first time,

 Preface

 xi

chapter and section names, Notes and
Cautions, and any other text that needs
particular emphasis.

Courier font Code examples and filenames.
Arial 8 point font Output from a CSIM model

System Requirements and Supported Platforms

CSIM for Java runs any system with Java and a JVM installed. Java
development kit (jdk) version 1.4.1 or higher is required.

Installation

CSIM for Java is distributed as a Java Archive (jar) file. There are at
least three different ways of installing and using CSIM for Java:
using the Command line, using the Eclipse interactive development
environment (IDE), and with the NetBeans IDE.

You may need to install a Java SDK (jdk) or Java Runtime
Environment (JRE) on your system. One such jdk is available from
Sun Microsystems, Inc., at www.sun.com –>downloads –> Java 2
Standard Edition –> J2SE 5.0.

Command Line

1) Create a directory called csimForJava.

Preface

 xii

2) Copy the csimForJava.jar file to this folder.

3) Copy the Java program file, App.java, to this folder.

4) Using the Command Prompt window, execute the following
statements:
a. javac –classpath csimForJava.jar;. App.java
b. java –classpath csimForJava;. App

Note: Make sure to include the “;.” in this step; without this
syntax, the statements will not execute.

5) The output for App.java is in the file App.out

On Windows, you may have to alter the path environment variable,
and append the directory that holds the javac and java
executables; the command for doing this is:

set path=%path%;c:\<insert full path here>

So, for example:

set path=%path%;c:\j2sdk1.4.2_01\bin

Note: This changes the path variable in the current window.

You can also modify the path variable for every Command Prompt
window in the Windows Control Panel:

1) Open the System control panel icon

2) Select the Advanced tab

3) Click the Environment Variables button.

 Preface

 xiii

Note: Using the Cygwin has not been verified as a good technique
for running Java applications and the csimForJava.jar.

Eclipse
1) In Eclipse, create a new project called CsimForJava.
2) Import a java file (e.g., App.java).
3) Add the csimForJava.jar file:

a. Right click on the project (in the Package Explorer)
b. Click Properties
c. In the left pane, click Java Build Path
d. Select the Libraries tab
e. Select Add External JARs, find the csimForJava.jar

file, and add it.
4) To run the program, right click the source file. Using the Run

option, select Java Application.
5) The output for the App.java program is in the file App.out

App.txt.

NetBeans
1) In NetBeans, create a new project. For these instructions,

assume that the name of this project will be CsimForJava.
a. Select General project and then Java Application
b. Disable the Create Main Class option

2) In the new directory named CsimForJava
a. Copy the file App.java to the src directory in

CsimForJava
b. Copy the csimForJava.jar file to CsimForJava

3) In the NetBeans project called CsimForJava:

a. In the folder name Source Packages, you should find the file
App.java under the <default> package

b. Right click the Libraries folder; select the Add Jar/folder...
option and add the csimForJava.jar file to the project

4) Right click the <default> folder and select Compile Package

Preface

 xiv

5) Right click the CsimForJava folder and select Run Project; click
OK when asked to choose the Main class

6) When execution ends, use the File -> Open menu to open the
App.out file in order to view the results.

Support and Contact Information

If you have questions about CSIM or would like to purchase a copy,
please contact Mesquite Software or visit our website at
www.mesquite.com.

Mesquite Software
8500 N. Mopac Expwy, Suite 825
Austin, Texas 78759 USA

Phone: (800) 538-9153 in US or +1 (512) 338-9153
Fax: +1 (512) 338-4966
E-mail: info@mesquite.com
Web: www.mesquite.com

 1. Introduction

 1

1. Introduction

CSIM for Java is a process-oriented discrete-event simulation package
for use with the Java programming language. CSIM for Java is based
on CSIM1, a simulation library for use with C/ C++ programs. CSIM for
Java is implemented as a library of classes that implement a
comprehensive set of structures and operations. The end result is a
convenient tool that programmers can use to create simulation models
of complex systems.

In this User’s Guide, the term “CSIM” refers to CSIM for Java; if CSIM
for C/C++ is referenced, it will be specified as such.

A CSIM program models a system as a collection of CSIM processes
that interact with each other by using CSIM objects. The purpose of
modeling a system is to produce estimates of time and performance.
The model maintains simulated time, so that the model can yield
insight into the dynamic behavior of the modeled system.

This document provides a description of:
• CSIM objects and the statements that manipulate them
• Reports available from CSIM
• Information on compiling, executing and debugging CSIM

programs.

1 CSIM is copyrighted by Microelectronic and Computer Technology Corporation, 1985-1994.
Java is a registered trademark of Sun Microsystems, Inc.

1. Introduction

 2

1.1. Java Implementation of CSIM

The goal for the Java implementation of CSIM is to give Java
programmers a set of classes and objects that can be used to
implement process-oriented, discrete-event simulation models. CSIM
is used as the basis for this framework. CSIM C/C++ has been shown
to be a flexible, powerful and useful library for use by C++ and/or C
programmers to develop simulation models of large, complex systems.
Using CSIM C/C++ as a basis for CSIM for Java extends these
capabilities to the Java environment.

CSIM for Java is a Java toolkit. It makes use of Java threads to
implement CSIM processes. Java programmers should find this toolkit
to be a natural and convenient way of implementing simulation models.
CSIM C/C++ programmers should find many familiar concepts and
mechanisms in the Java implementation.

1.2. CSIM Objects and the Model Object

CSIM provides a number of classes that define the objects used by
CSIM models. A CSIM model is a class that extends the Model
class.

At a high level, CSIM provides the following simulation objects:
• Processes – the active entities that request service at facilities,

wait for events, etc. (i.e., processes deal with all of the other
structures in this list)

 1. Introduction

 3

• The Facility class – queues and servers reserved or used by
processes

• The Storage class – resources that can be partially allocated to
processes

• The Buffer class – resources that can be partially allocated to
processes; a buffer can be empty and/or partially full

• The Event class – used to synchronize process activities
• The Mailbox class – used for inter-process communications
• Data collection structures – used to collect data during the

execution of a model; these include the Table class and the
QTable class

• The ProcessClass class – used to segregate statistics for
reporting purposes

• The Random class – implements streams of random numbers

The processes mimic the behavior of active entities in the simulated
system.

The Model class has a number of methods that are used as a CSIM
model is created. These methods are noted in the following sections.
The Model class is described in Chapter 19 – Output From CSIM and
the Model Class.

1.3. Syntax Notes

• All parameters are required.
• Whenever a parameter is included within double quotes (e.g.,

“name”), it can also be passed as a string.

1. Introduction

 4

1.4. Import Files

All of the classes required by a CSIM model are defined in a set of
import files. The usual set of import files is as follows:

import com.mesquite.csim.*;
import com.mesquite.csim.Process;
import com.mesquite.csim.file.Files;
import java.io.*;

The class Process is in conflict with class Process in
java.lang.Process; thus the class Process in CSIM for Java must be
explicitly imported.

The class Random in java.util.Random is in conflict with the class
Random in CSIM for Java. The CSIM version overrides; however, if
java.util.Random is used, it must referenced using the full path name.

 1. Introduction

 5

 2. Simulation Time

 7

2. Simulation Time

Time is an important concept in any performance model. CSIM
maintains a simulation clock whose value is the current time in the
model. This simulation time is distinctly different than the CPU time
used in executing the model or the “real world” time of the person
running the model. Simulation time starts at zero and then advances
unevenly, jumping between the times at which the state of the model
changes. It is impossible to make time move backwards during a
simulation run.

The simulation clock is implemented as a double precision floating
point variable in CSIM. For most models, there is no need to worry that
the simulation clock will overflow or that round-off error will impact the
accuracy of the clock.

The simulation clock is used extensively within CSIM to schedule
events and to update performance statistics. CSIM processes may
retrieve the current time for their own purposes and may indirectly
cause time to advance by performing certain operations.

2.1. Choosing a Time Unit

The CSIM simulation clock has no predefined unit of time. It is the
responsibility of the modeler to choose an appropriate time unit and to
consistently specify all amounts of time in that unit. All performance
statistics reported by CSIM should also be interpreted as being in that
chosen time unit.

2. Simulation Time

 8

A good time unit might be close to the granularity of the smallest time
periods in the model. For example, if the smallest time periods being
modeled are on the order of tens of milliseconds, an appropriate time
unit might be either milliseconds or seconds. Using microseconds or
minutes as the time unit would produce performance statistics that are
either very large or very small numbers.

Most numbers appearing in CSIM performance reports are printed with
up to six digits to the left of the decimal point and six digits to the right
of the decimal point. A time unit should be chosen to avoid numbers
so large that they overflow their fields or so small that interesting digits
are not visible.

2.2. Retrieving the Current Time

The clock method from the Model class can be used to retrieve the
current value of the simulation clock, as follows:

Prototype: public class MyModel extends Model {
 public static void main(String args[]) {
 MyModel model = new MyModel();

Example: double x = model.clock();

NOTE: Because a process is always contained in a class derived
from the Model class, the following is allowed:

Example: double x = clock();

 2. Simulation Time

 9

2.3. Delaying for an Amount of Time

A CSIM process can delay for a specified amount of simulation time
by calling the hold function.

Prototype: void hold(double amount_of_time)

Example: hold(1.0);

The hold() method is part of the Process class. As references to the
hold() method are normally made from within a Process object, the
reference does not have to qualified by the containing class.

If there are other processes waiting to run, the calling process will be
suspended. Otherwise, time will immediately advance by the specified
amount.

A process can delay until a specified time by calling hold with a
parameter value equal to the specified time minus the current time. To
make a simulation begin with a clock value other than zero, simply call
hold at the beginning of the sim function with an amount of time equal
to the desired initial time.

Calling the hold function with a zero amount of time might at first seem
to be meaningless. But, it causes the running process to relinquish
control to any other processes that are waiting to run at the same
simulation time. This behavior can be used to affect the order of
execution of processes that have activities scheduled for the same
simulation time.

2. Simulation Time

 10

2.4. Advancing Time

There is no way for a program to directly assign a value to the
simulation clock. The simulation clock advances as a side effect of a
process performing one of the following method-calls:

process.hold storage.allocate

buffer.get buffer.put

buffer.timed_put buffer.timed_get

event.untimed_wait event.queue

event.wait_any event.queue_any

event.timed_wait event.timed_queue

facility.reserve facility.timed_reserve

facility.use storage.timed_allocate

mailbox.receive mailbox.timed_receive

Calling one of these methods does not guarantee that time will
advance. For example, calling the storage.allocate method will cause
time to pass only if the requested amount of storage is not available.

All CSIM method calls not listed above, as well as all Java language
statements, occur instantaneously with respect to simulation time. A
CSIM program can perform arbitrarily many activities in a single instant
of simulation time.

 2. Simulation Time

 11

A common programming error is to create a CSIM process that calls
none of the methods in the above list. When this process receives
control, it runs endlessly to the exclusion of all other CSIM processes.

2.5. Displaying the Time

There are several ways the simulation time can be automatically
displayed while running a CSIM program. Every trace message
contains the current simulation time. The model.clock() method can
be used to get the current simulated time. Also, when the report
function is called to produce a report of all statistics, the report header
contains the current simulation time.

2.6. Integer-Valued Simulation Time

In some simulation models, e.g., models of computer hardware, it is
the case that time can only assume discrete integer values. Although
CSIM maintains time as a floating-point variable, some simple
programming techniques can insure that the clock will always have an
integer value. (Here, we are using the word integer in the mathematical
sense.) Amounts of time appear as input parameters in calls to the
following methods: process.hold, facility.use, facility.timed_reserve,
storage.timed_allocate, buffer.timed_put, buffer.timed_get,
mailbox.timed_receive, event.timed_wait, event.timed_queue,
event.time_wait_any and event.timed_queue_any. To maintain an
integer-valued clock, these parameters must have values that are
integers (although of type double), which can be accomplished either

2. Simulation Time

 12

by specifying an integer numeric literal or by using an integer-valued
function.

Example: hold(10);

Example: bus.use(uniform_int(1,5));

Example: bus.use(Math.floor(exponential(1.0)));

The automatic type conversion features of Java insure the correct
results.

The IEEE Floating Point Standard guarantees that addition and
subtraction with integer-valued operands will yield integer-valued
results. CSIM performs only addition on the simulation clock.

 3. Processes

 13

3. Processes

Processes represent the active entities in a CSIM model. For
example, in a model of a bank, customers might be modeled as
processes (and tellers as facilities). In CSIM, a process is an
extension of the Process class; the Process class extends the
java.lang.Object class. A CSIM process should not be confused with
a UNIX process (which is an entirely different thing). The first process
in a CSIM model is invoked using the model.start method; all
subsequently activated processes are invoked using the model.add
method. A process can be invoked with input arguments, but it cannot
return a value to the invoking process.

There can be several simultaneously "active" instances of the same
process. Each of these instances appears to be executing in parallel
(in simulated time) even though they are in fact executing sequentially
on a single processor. The CSIM runtime package guarantees that
each instance of every process has its own runtime environment. All
processes have access to a program’s global variables.

A CSIM process, just like a real process, can be in one of four states:
• Actively computing
• Ready to begin computing
• Holding (allowing simulated time to pass)
• Waiting for an event to happen (or a facility to become available,

etc.)

When an instance of a process terminates, either explicitly or via a
method exit, it is deleted from the CSIM system. Each process has a
unique process id and each has a priority associated with it.

3. Processes

 14

3.1. Initiating a Process

In CSIM, a process is a class that extends the Process class. The
first process in the model is initiated using the model.start(Process p)
method:

Prototype: private class Proc extend Process { };

Example: model.start(new Proc);

Subsequent processes are initiated (or invoked, or started) when
another process calls the model.add(Process p) method:

Prototype: private class Proc extend Process { };

Example: model.add(new Proc);

Caution: A process cannot return a function value.

3.2. The model.add and model.start Methods

The model.start(new Proc) and the model.add(new Proc) methods (see
above) each instantiate an instance of the process Proc. When the
start or add method is called, the following actions take place:
• A process control block for the new process (Proc) is created and

scheduled for execution at the current point in simulated time, and
• The invoking process (the process calling the add method)

continues its execution (i.e., it remains the actively computing
process) at the statement after the call to the add method.

The calling process continues as the active process until it suspends
itself.

 3. Processes

 15

No simulated time passes during the execution of an add (or start)
method call.

Every process instance in a CSIM model is assigned an almost-unique
process id. Process id’s are 32 bit integers; if 231-1 id’s are used, the
sequence of id’s is reset to 2.

In many cases, the first process started is a process named sim, but
this is not required.

3.3. The Structure of a Process

Every CSIM process must have a constructor method and must
implement a run method. The new process extends the Process
class provided by CSIM. The constructor calls the Process class
constructor using the super(String name) method. The run() method
contains the statements that implement the “behavior” of the new
process.

Example: private class Job extends Process {
 public Job() {
 super(“Job”);
 }
 public void run() {
 // statements
 }
}

If the calling process needs to transmit input arguments (parameters)
to the new process, it would use the constructor and would store the
arguments as local variables internal to the new process:

3. Processes

 16

Example: private class Job extends Process {
 public Job(int arg1, double arg2) {
 super(“Job”);
 m_arg1 = arg1;
 m_arg2 = arg2:
 }
 int m_arg1;
 double m_arg2;
 public void run() {
 if(m_arg1 == 0) {
 ...
 }
 }
}

3.4. Process Operation

Processes appear to operate simultaneously with other active
processes at the same points in simulated time. The CSIM process
manager creates this illusion by starting and suspending processes as
time advances and as events occur. Processes execute until they
“suspend” themselves by doing one of the following actions:
• Execute a hold statement (delay for a specified interval of time),
• Execute a statement that causes the processes to be placed in a

queue, or
• Exit (the process).

Processes are restarted when the time specified in a hold statement
elapses or when a delay in a queue ends. It should be noted that

 3. Processes

 17

simulated time passes only by the execution of hold statements.
While a process is actively computing, no simulated time passes.

The Java process object manager preserves the correct context for
each instance of every process. In particular, separate versions of all
local variables and input arguments for each process are maintained.

3.5. Terminating a Process

A process terminates when the run method does a normal method exit
or when a process executes the Process.terminate() method.

Prototype: void Process.terminate()

Example: terminate();

The normal case is for a process to do a normal method exit. The
terminate method is provided when this normal case is not appropriate.

3.6. Changing the Process Priority

The initial priority of a process is inherited from the initiator of that
process. For the first process, the default priority is 1 (low priority).

Prototype: void set_priority(long new_priority)

Example: set_priority(5);

This statement can appear anywhere in the run() method for a
process. Lower values represent lower priorities (i.e., priority 1

3. Processes

 18

processes will run after priority 2 processes when priority is a
consideration in order of execution. Process priorities are used to
order processes waiting in queues (e.g., queues in facilities or queues
in events). In case of equal priorities, a process joining a queue is
placed after the other processes with equal priorities. If all process
priorities are equal, the waiting processes are serviced in first come,
first served (FCFS) order.

3.7. Inspector Functions

These functions each return some information to the process that
issues the statement. The type of the returned value for each of these
functions is indicated.

Prototype: Functional Value:

String name() retrieves pointer to name of process
 issuing inquiry

int identity() retrieves the identifier (process
 number) of process issuing the
 inquiry

int priority() retrieves the priority of the process
 issuing inquiry

 4. Facilities

 17

4. Facilities

A facility is normally used to model a resource (something a process
requests service from) in a simulated system. For example, in a model of
a computer system, a CPU and a disk drive might both be modeled by
CSIM facilities. A simple facility consists of a single server and a single
queue (for processes waiting to gain access to the server). Only one
process at a time can be using a server. A multi-server server facility
contains a single queue and multiple servers. All of the waiting processes
are placed in the queue until one of the servers becomes available.

Normally, processes are ordered in a facility queue by their priority (a
higher priority process is ahead of a lower priority process). In cases of
ties in priorities, the order is first come, first served (FCFS). Service
disciplines other than priority order can be established for a server. These
are described in section 4.10, Specifying the Service Discipline at a
Facility.

Briefly, every facility is declared with a service type. Normally, a facility is
declared as a facility of specified type (e.g., FCFSFacility). However, a
basic facility (Facility) can be instantiated as a typed facility; this is useful
in dealing with an array of facilities of different types.

A set of usage and queueing statistics is automatically maintained for
each facility in a model. The statistics for all facilities that have been used
are "printed" when either a report (see section 19.3, CSIM Report Output)
or a report_facilities is executed (see section 4.4, Producing Reports, for
details about the reports that are generated). In addition, there is a set of
inspector methods that can be used to extract individual statistics for each
facility.

First time users of facilities should focus on the following four sections,
which explain how to set up facilities, use (and reserve and release)

4. Facilities

 18

facilities, and produce reports. Subsequent sections describe the more
advanced features of facilities.

4.1. Declaring and Initializing a Facility

A single-server, first come, first served (FCFS) facility is declared as
follows:

Example: FCFSFacility m_fac(“facName”);

A newly created single-server facility is created with a single server that is
“free”. The facility name is used only to identify the facility in output
reports and trace messages. Facilities using other types of scheduling
disciplines (other than FCFS) are available (see below).

Facilities are normally declared as globally accessible (accessible to all of
the processes in the model).

4.2. Using a Facility

A process typically uses a server for a specified interval of time.

Prototype: void use(double);

Example: m_fac.use(exponential(1.0));

If the server at this facility is free (not being used by another process), then
the process gains exclusive use of the server and the usage interval starts
immediately. At the end of the usage interval, the process gives up use of

 4. Facilities

 19

the server and departs this facility. Execution continues at the statement
following the use statement.

If the server at this facility is busy (is being used by another process), then
the newly arriving process is placed in a queue of waiting processes; this
queue is ordered by process priority, with processes of equal priority being
ordered by time of arrival. As each process completes its usage interval,
the process at the head of the queue is assigned to the server and its
usage interval starts at that time.

The service discipline at a facility specifies how processes are given
access to the server. One of several different service disciplines can be
specified for a facility. And, another form of facility, the multi-server
facility, has multiple servers. In addition, it is possible to have an array of
facilities. The difference between a multi-server facility and an array of
facilities is that a multi-server facility has one queue for all of the waiting
processes, while an array of facilities has a separate queue for each
facility in the array.

4.3. Reserving and Releasing a Facility

In some cases, a process will acquire a server, but will do something other
than enter the usage interval when it gets the server. The statements for
doing this are reserve (to gain exclusive use of a server) and release (to
relinquish use of the server acquired in a previous reserve statement).

Prototypes: int reserve();
 void release();

Examples: m_fac.reserve();
 m_fac.release();

When a process executes a reserve, it either gets use of the server
immediately (if the server is not busy) or it is suspended and placed in a

4. Facilities

 20

queue of processes waiting to get use of the server. When it gains access
to the server, it executes the statement following the reserve statement.
Processes are ordered in the queue by priority, with processes of equal
priority being ordered by time of arrival. This process priority service
discipline is called FCFS in CSIM; it is the only service discipline that can
be specified for facilities where processes do this reserve-release style of
access. If another service discipline is in force, then the processes must
execute use statements instead of reserve-release pairs of statements.

The value returned is the index of the server assigned to the process.
Normally, this is not needed and can be ignored.

The process that releases a server at a facility must be the same process
as the one that reserved it. When a process executes a release, it gives
up use of the server. If there is at least one process waiting to start using
the server (i.e., there is at least one process in the queue at this facility),
the process at the head of the queue is given access to the server and that
process is then reactivated and will proceed by executing the statement
following its reserve statement. No simulation time passes during
execution of a release statement.

Note: Executing the sequence m_fac.reserve(); hold(t); m_fac.release(); is
equivalent to executing the statement m_fac.use(t). However, if the usage
interval is specified by a random number function, then there is a subtle
difference between these functions: the randomly derived interval is
determined after gaining access to the server in the first sequence and
before gaining access to the server with the use form. Thus, it is likely that
the intervals in these two examples will be different. In other words, the
sequence m_fac.reserve(); hold(exponential(t); m_fac.release(); will not
necessarily exhibit exactly the same behavior as executing the statement
m_fac.use(exponential(t));.

 4. Facilities

 21

4.4. Producing Reports

Reports for facilities are most often produced by calling the report function,
which prints reports of all the CSIM objects. Reports can be produced for
all existing facilities by calling the report_facilities method in the model
class.

Prototype: void report_facilities();

Example: model.report_facilities();

The report for the set of facilities, as illustrated below, includes for each
facility: the name of the facility, the service discipline, the average service
time, the utilization, the throughput rate, the average queue length, the
average response time and the number of completed service requests.

It should be noted that the queueing statistics for a facility uses the
convention from queueing theory in which the customer(s) in service are
counted as part of the average queue length and the service time for
customers are included in the average response time. The average time in
the queue but not in service can computed by subtracting the average
service time from the average response time. Similarly, the average
number of customesr in the queue but not in service can be computed by
subtracting the utilization from the average queue length.

FACILITY SUMMARY

facility service service through queue response compl
name disc time util. put length time count
--

f fcfs 0.40907 0.208 0.50900 0.27059 0.53162 509
ms fac fcfs 1.50020 0.764 0.50900 0.83821 1.64678 509
 > server 0 1.55358 0.494 0.31800 318
 > server 1 1.41133 0.270 0.19100 191
q rnd_rob 0.73437 0.507 0.69000 0.95522 1.38438 690

4. Facilities

 22

4.5. Resetting a Facility

In some cases, it is necessary to reset the statistics counters for a
specific facility.

Prototype: void reset()

Example: m_fac.reset();

Executing this statement does not affect the state of the facility or its
servers. The reset() and the reset_facilities statements each call
facility::reset() for all facilities in the model.

4.6. Declaring and Initializing a Multi-server Facility

In some cases, a facility has multiple servers, and each of these servers is
indistinguishable from the other servers. A mutli-server facility is declared:

A multi-server facility is constructed as follows:

Prototype: FCFSFacility_ms(char *name, long ns);

Static Example: FCFSFacility cpus(“dual cpu”, 2);

A process can either execute a use statement or the reserve-release pair
of statements at a multi-server facility. In either case, the process gains
access to any server that is free. A process is suspended and put in the
single queue at the facility only when all of the servers are busy.

 4. Facilities

 23

4.7. Releasing a Specific Server at a Facility

Sometimes, it is necessary for one process to reserve a facility and then
for another process to release the server obtained by the first process. In
this case, the first process has to save the index of the server it obtained,
and then give this server index to the second process, so that it can
specify that index in the release(index) statement, as follows:

Example: server_index = m_fac.reserve();

Prototype: void release(int serverIndex)

Example: m_fac.release(serverIndex);

This command operates in the same way as the release statement,
except that the ownership of the server is not checked; thus, a process
that did not reserve the facility may release it by executing the
release(index) statement with a server index.

4. Facilities

 24

4.8. An Array of Facilities

An array of facilities can be initialized as follows:

Example: Facility m_fac[];

 m_fac = new Facility[5];

 for(i = 0; i < 5; i++)

 m_fac[i] = new FCFSFacility(“fac”+i);

In an array of facilities, each element is an independent, single server
facility, with its own queue. Each of these facilities is given a constructed
name that shows its position in the set. In the above example, the name
for the first element of the set is fac0. Arrays of facilities are used to
model cases where each server has its own queue of waiting processes.

An individual element of a facility is accessed as an array element, as
follows:

Example: m_fac[i].use(exponential(1.0));

 4. Facilities

 25

4.9. Reserving a Facility with a Time-out

Sometimes a process must not wait indefinitely to gain access to a server.
If a process executes the timed_reserve method, it will be suspended until
either it gains use of a server or the specified time-out interval expires.

Prototype: long timed_reserve(double timeout)

Example: result = m_fac.timed_reserve(100.0);
 if (result == -1) . . .

The process must check the functional value to determine whether it
obtained a server. If the returned value is -1, the process did not obtain a
server. If the returned value is not -1, then the process did obtain a server
and should eventually release the server.

4.10. Specifying the Service Discipline at a Facility

The service discipline for a facility determines the order in which processes
at the facility are given access to that facility. The most commonly used
service discipline for a facility is FCFS. When the priorities differ,
processes gain access to the server in priority order (higher priority
processes before lower priority). When processes have the same priority,
the processes gain access in the order of their arrival at the facility (first
come, first served). Facilities with different service disciplines are different
types of facilities. The types of facilities are as follows:

• First come, first served FCFSFacility

4. Facilities

 26

• Infinite capacity server INFFacility

• Last come, first served LCFSFacility

• Pre-empt resume PRERESFacility

• Round robin pre-empt RNDPREFacility

• Round robin priority RNDPRIFacility

• Round robin RNDROBFacility

Prototypes: FCFSFacility (“name”)
 INFFacility (“name”);
 LCFSFacility (“name”);
 PRERESFacility (“name”);
 RNDPREFacility (“name”);
 RDNPRIFacility (“name”);
 RNDROBFacility (“name”);

Example: RNDROBFacility m_rndRobFac(“cpu”);

This service function can be any of the following pre-defined service
discipline functions:

• FCFSFacility – first come, first served

This is the normal service discipline and is described in the
introduction to this section.

• INFFacility – infinite servers

There is no queueing delay at all since there is always a server
available at the facility.

• LCFSFacility – last come, first served, pre-empt

Arriving processes are always serviced immediately, pre-empting a
process that is currently being served if necessary. Priority is not a
consideration with this service discipline.

 4. Facilities

 27

• PRERESFacility – pre-empt resume

Higher priority processes will pre-empt lower priority processes, so
that the highest priority process at the facility will always finish using it
first. Where the priorities are the same, processes will be served on a
first come, first served basis. Pre-empted processes will eventually
resume and complete their service time interval.

• RNDPREFacility – round robin with pre-emption

• RNDPRIFacility – round robin with priority

Higher priority processes will be served first. When there are multiple
processes with the same priority, they will be serviced on a round
robin basis, with each getting the amount of time specified in
set_timeslice (see below) before being pre-empted by the next
process of the same priority.

• RNDROBFacility – round robin

Processes will be serviced on a round robin basis, with each getting
the amount of time specified in set_timeslice (see below) before being
pre-empted by the next process requiring service. The default value of
the time slice interval is 1.0. Process priority is not a consideration
with this service discipline.

Caution: The use statement (as opposed to the reserve) statement must
be used for most of these service disciplines to be effective. Only FCFS
will operate properly with reserve.

To set the time slice for the round robin service disciplines,
RNDPREFacility, RNDPRIFacility and RNDROBFacility (see above):

Prototype: void timeslice(double slice_length)

Example: m_fac.set_timeslice(0.01);

4. Facilities

 28

4.11. Collecting Class-Related Statistics

Information about usage of a facility by processes that belong to different
process classes can be collected for all facilities or for a specific facility
(see Chapter 17 for information on process classes). To collect class-
based usage information for a specific facility:

Prototype: void collect()

Example: m_fac.collect();

Usage of this facility by all process classes will be reported in the facilities
report. Also, it is an error to change the maximum number of classes
allowed after this statement has been executed.

To collect usage information for all facilities:

Prototype: void collect_class_facility_all()

Example: model.collect_class_facility_all();

This command applies to all of the facilities in existence when this
statement is executed. Usage of the facilities by all process classes will
be reported in the facilities report. It is an error to change the maximum
number of classes allowed after this statement has been executed.

4.12. Inspector Methods

All statistics and information maintained by a facility can be retrieved
during execution of a model or upon its completion.

Prototype: Functional Value:

String name() name of facility

 4. Facilities

 29

long numServers() number of servers at facility

String type() name of service discipline at facility

double timeslice() time in each time-slice for facility
 (which has a round robin service
 discipline)

int num_busy() number of servers currently busy at
 facility

int qlength() number of processes currently
 waiting at facility

int completions() number of completions at facility

double queueLength() mean queue length at facility

double responseTime() mean response time at facility

double serviceTime() mean service time at facility

double throughput() mean throughput rate at facility

double utilization() utilization (fraction of time busy) at facility

Data on a facility is available in a FacilityStats object; a FacilityStats
object can be obtained as follows:

FacilityStats stats = m_fac.stats(n)

 facility statistics object

The elements in a FacilityStats object are:

4. Facilities

 30

int stats.completions()
 number of completions at facility

double stats.serviceTime()
 mean service time at facility

double stats.throughput()
 mean throughput rate at facility

double stats.utilization(long sn)
 utilization at facility

Additional data on servers can be obtained as follows:

ServerStats stats = m_fac.serverStats(n)
 statistics object for server n at facility

int stats.completions()
 number of completions for server n at facility

double stats.serviceTime()
 mean service time for server n at facility

double stats.throughput()
 mean throughput rate for server n at facility

double stats.utilization(long sn)
 utilization for server n at facility

Data on the utilization of a server by a specific process class can be
obtained as follows:

ProcessClass cl
process class object

ServerStats stats = m_fac.stats(cl)
 ServerStats object for class cl at facility

int stats.completions()
 number of completions for class cl at facility

 4. Facilities

 31

double stats.queueLength()
 mean queue length for class cl at facility

double stats.responseTime()
 mean response time for class cl at facility

double stats.serviceTime()
 mean service time for class cl at facility

double stats.throughput()
 mean throughput rate for class cl at facility

double stats.utilization()
 utilization for class cl at facility

4.13. Status Report

To obtain a report on the status of all of the facilities in a model:

Prototype: void status_facilities()

Example: model.status_facilities();

This report lists each facility along with the number of servers, the number
of servers that are busy, the number of processes waiting, the name and id
of each process at a server, and the name and id of each process in the
queue.

4. Facilities

 32

 5. Storages

 33

5. Storages

A CSIM storage is a resource that can be partially allocated to a
requesting process. A storage consists of a counter (to indicate the
amount of available storage) and a queue for processes waiting to
receive their requested allocation

Usage and queueing statistics are automatically maintained for each
storage unit. These are "printed" whenever a report or a
report_storages statement is executed (see section 19.3, CSIM
Report Output, for details about the reports that are generated).

5.1. Declaring and Initializing Storage

A storage object is as follows:

Example: Storage m_str;

Before a storage can be used, the constructor must be invoked:

Prototype: Storage(char *name, int size)

Example: m_str = new Storage(“mem”, 1000);

A newly created storage is created with all of the “storage” available.
Storages should be declared with global variables in the sim (main)
process, prior to the beginning of the simulation part of the model. A
storage must be initialized via the new storage statement before it can
be used in any other statement.

5. Storages

 34

5.2. Allocating from a Storage

The elements of a storage can be allocated to a requesting process.

Prototype: void allocate(int amount)

Example: m_str.allocate(10);

The amount of storage requested is compared with the amount of
storage available at m_str. If the amount of available storage is
sufficient, the amount available decreases by the requested amount
and the requesting process continues. If the amount of available
storage is not sufficient, the requesting process is suspended. When
some of the storage elements are deallocated by some other process,
the highest priority waiting processes are automatically allocated their
requested storage amounts (as they can be accommodated), and they
are allowed to continue. The list of waiting processes is searched in
priority order until a request cannot be satisfied. In order to preserve
priority order, a new request that would fit but would get in front of
higher priority waiting requests will be queued.

5.3. Deallocating from a Storage Unit

To return storage elements to a storage, the deallocate procedure is
used.

Prototype: void deallocate(int amount)

Example: m_str.deallocate(10);

 5. Storages

 35

If there are processes waiting, the highest waiting priority processes
are examined. Those that will now fit have their requests satisfied and
are allowed to continue. Executing a deallocate statement causes no
simulated time to pass.

Caution: There is no check to insure that a process returns only the
amount of storage that it had been previously allocated.

5.4. Producing Reports

Reports for storages are most often produced by calling the report
function, which reports for all CSIM objects. Reports can be produced
for all existing storages by calling the report_storages function. The
report for a storage, as illustrated below, gives the name of the
storage, the size (initial amount), the average allocation request, the
utilization, the average time each request is “in” the storage, the
average queue length, the average response time and the number of
completed requests.

 STORAGE SUMMARY

storage alloc alloc dealloc dealloc in-que in-queue
name size amount count amount count util length time
--

store 120 33.6 100335 30.0 100333 0.751 7.94470 7.91818

5. Storages

 36

5.5. Resetting a Storage Unit

In some cases, it is necessary to reset the statistics counters for a
specific storage unit.

Prototype: void reset()

Example: m_str.reset();

Executing this statement does not affect the state of the storage. The
reset and the reset_storages statements each call the reset () method
for all storage units in the model.

5.6. An Array of Storages

In an array of storages, each element of the array is an individual
storage.

Example: Storage m_strs[];

A storage set must be constructed before the elements of the set can
be used.

Example: m_strs = new Storage[5];
 for(int i = 0; i < 5; i++)
 m_strs[i] = new Storage(“str”+i, 100);

The example declares and then initializes a set of five storages, each
with 100 elements of storage available at the onset of operation. Each

 5. Storages

 37

individual unit of storage is given a unique (indexed) name. In the
example, the first storage in the set is named str0, the second is
named str1, and so on. The last storage is named str4. Similarly, the
individual units of storage are accessed as elements of an array. All of
the operations that apply to a storage also apply to the individual units
of a storage set.

Individual elements of a storage set are accessed as shown in these
examples:

Example: m_strs[i].allocate(10);

5.7. Allocating Storage with a Time-out

Sometimes, processes cannot wait indefinitely to allocate the needed
amount of storage. If such a process executes the timed_allocate
function, then, if the requested amount of storage is not available, the
process will be suspended until either the requested amount of storage
becomes available or the time-out interval expires.

Prototype: boolean timed_allocate(int amount,
 double timeout)

Example: result = m-str.timed_allocate(10,100.0);
 if(result) . . .

The process must check the function value (result) to determine
whether or not the requested storage was obtained. If the value false
is returned, the process did not obtain any of the requested storage. If
the value true is returned, then the process did obtain the requested
storage.

5. Storages

 38

5.8. Inspector Methods

These functions each return a statistic that describes some aspect of
the usage of the specified storage.

Prototype: Functional Value:

String name() name of store

int capacity() number of storages defined for store

int available() number of storages currently available
 at store

int qlength() number of processes currently waiting
 at store

double busySum() sum of requested amounts from store

int sumAllocs() time-weighted sum of requests for
 store

int sumDeallocs() time-weighted sum of releases of
 store

double busySum() busy time-weighted sum of amounts
 for store

double waitingTime() waiting time weighted sum of amounts
 for store

int allocCount() total number of requests for store

int deallocCount() total number of completed requests for
 store

double elapsedTime() time at store that is spanned by report

double utilization() utilization

double queueLength() average queue length

 5. Storages

 39

double respsonseTime() average response time

5.9. Reporting Storage Status

Prototype: void status_storages()

Example: status_storages();

The report will be written to the default output location or to the
specified by set_output_file (see section 21.6, Output File Selection).

5. Storages

 40

 6. Buffers

 41

6. Buffers

A CSIM buffer is a resource that can store (hold) a number of tokens.
The primary operations for a buffer are put, which places a number of
tokens into the buffer, and get, which removes a number of tokens
from the buffer. A buffer has a maximum capacity for holding tokens.
A get operation stalls if there are too few tokens in the buffer, and a
put operation stalls if there is not enough space (unused capacity) in
the buffer.

A buffer consists of a counter (indicating the number of tokens in the
buffer), and two queues: a put-queue, for processes waiting to
complete a put operation, and a get-queue, for processes waiting to
complete a get operation.

Usage and queueing statistics are automatically maintained for each
buffer. These are “printed” whenever a report or report_buffers
statement is executed (see section 19.3, CSIM Report Output, for
details about the reports that are generated).

6. Buffers

 42

6.1. Declaring and Initializing a Buffer

A buffer object is as follows:

Example: Buffer m_b;

Before a buffer can be used, it must be initialized by calling the buffer
function.

Prototype: Buffer(String name, int size);

Example: m_b = new Buffer(“b”, 10);

A newly created buffer is empty. Buffers should be declared and
initialized as global variables in the sim (main) process, prior to
beginning the simulation part of the model. A buffer must be initialized
via the new buffer statement before it can be used in any other
statement.

6.2. Putting Tokens into a Buffer

Tokens can be added to a buffer using the put operation.

Prototype: void put(int amt);

Example: m_b.put(5);

The number of tokens being put (the amount) is compared with the
space remaining in the buffer (the maximum size minus the current
amount). If the available space is less than or equal to space

 6. Buffers

 43

remaining, the amount of the put is added to the current amount and
the process doing the buffer-put operation continues. If the amount
specified in the put call exceeds the space remaining, the process is
placed in the put-queue and is then suspended. When some other
process (or processes) removes (gets) tokens, the highest priority
process in the put-queue is checked; if its put request can be
accommodated, the buffer-put is done and the process resumes at
the statement following the buffer-put statement. If other processes in
the put-queue can be accommodated, they too are processed and
allowed to proceed.

6.3. Getting Tokens from a Buffer

Tokens can be removed from a buffer using the buffer-get statement.

Prototype: void get(int amt);

Example: m_b.get(4);

The number of tokens being requested in a get (the amount) is
compared to the number in the buffer. If the amount is less than or
equal to the number in the buffer, the amount is subtracted and the
process doing the buffer-get proceeds. If not, the process doing the
buffer-get is placed in the get-queue and then suspended. When
another process (or processes) adds (puts) tokens to the buffer, the
highest priority process in the get-queue is checked; if its get request
can be satisfied, the buffer-get is done, and the process resumes at
the statement following the buffer-get. If other processes in the get-
queue can be accommodated, they too are processed and allowed to
proceed.

6. Buffers

 44

6.4. Producing Reports

Reports for buffers are most often produced by calling the report
function, which reports for all CSIM objects. Reports can be produced
for all existing buffers by calling the report_buffers function. The report
for a buffer gives the name of the buffer, followed by two sets of
statistics: one summarizing the put operations and one summarizing
the get operations.

__
BUFFER SUMMARY

buffer get get get get put put put put
name size amt qlen resp count amt qlen resp count
--

buff 20 2.4 0.00000 0.00000 32 3.5 1.54545 0.60714 28
__

6.5. Resetting a Buffer

In some cases, it is necessary to reset the statistics counters for a
specific buffer.

Prototype: void reset()

Example: m_b.reset();

 6. Buffers

 45

Executing this statement does not affect the state of the buffer or its
servers. The reset and the reset_buffers statements each call
Buffer.reset () for all buffers in the model.

6.6. Timed Operations for Buffers

Sometimes, processes cannot wait indefinitely to either get tokens
from or put tokens into a buffer.

Prototype: boolean timed_get(int amt, double timeout);

Example: result = m_b.timed_get(5, 100.0);
 if(result) . . .

and

Prototype: boolean timed_put(int amt, double timeout);

Example: result = m_b.timed_put(5, 100.0);
 if(result) {. . .

The process must check the function value (result) to determine
whether the operation timed out or completed. If the value false is
returned, the process did not get or put the amount. If the value true is
returned, then the process did complete the operation successfully.

6.7. Inspector Functions

These functions each return a statistic or counter value that describes
some aspect of the operation of a buffer:

6. Buffers

 46

Prototype: Function Value:

int current() current number of tokens

int size() capacity of buffer

int get_total() total amount retrieved

int put_total() total amount put

int get_count() number of get’s

int put_count() number of put’s

double get_timeQueue() sum of get-queue lengths

double put_timeQueue() sum of get-queue lengths

String name() name of buffer

int get_current_count() current get-queue length

int put_current_count() current put-queue length

6.8. Reporting Buffer Status

Prototype: void status_buffers();

Example: status_buffers();

The report will be written to the default output location or to the
location specified by set_output_file (see section 21.6, Output File
Selection).

 7. Events

 47

7. Events

Events are used to synchronize the operations of CSIM processes. An
event exists in one of two states: occurred or not occurred. A process
can change the state of an event or it can suspend its execution until
an event has occurred. When a process is suspended, it can join a set
of processes, all of which will be resumed when the event occurs. Or,
it can join an ordered queue from which only one process is resumed
for each occurrence of the event. An event is automatically reset to the
not occurred state when all of the suspended processes that can
proceed have done so.

Advanced features of events include the ability to create sets of events
for which processes can wait and the ability for a process to bound its
waiting time by specifying a time-out. Events can also be used to
construct other synchronization mechanisms such as semaphores.

7.1. Declaring and Initializing an Event

An event is declared in a CSIM program as follows:

Example: Event m_ev;

7. Events

 48

Before anevent can be used, it must be initialized by invoking the new
event constructor.

Prototype: Event(String name)

Example: m_ev = new Event(“done”);

An event is initialized in the not occurred state. The event name is
used only to identify the event in output reports and trace messages.

7.2. Waiting for an Event to Occur

A process waits for an event to occur by calling the wait function.

Prototype: void untimed_wait()

Example: m_ev.untimed_wait();

If the event is in the occurred state, control returns from the
untimed_wait function immediately, and the event is changed to the
not occurred state. If the event is in the not occurred state, the calling
process is suspended from further execution and control will not return
from the untimed_wait function until some other process sets this
event. When the event is set, all waiting processes will be resumed
and the event will be placed in the not occurred state.

Note: CSIM for C/C++ uses the wait() method rather than
untimed_wait(). The wait() command cannot be used in CSIM for Java
due to a conflict with a standard Java routine.

 7. Events

 49

7.3. Waiting with a Time-Out

Sometimes a process must not be suspended indefinitely while
waiting for an event to occur. If a process calls the timed_wait function,
it will be suspended until either the event is set or the specified
amount of time has passed.

Prototype: boolean timed_wait(double timeout)

Example: result = m_ev.timed_wait(100.0);
 if (result) {

The calling process should check the functional value to determine the
circumstances under which it was resumed. If the value true is
returned, the process was activated because the event has occurred; if
the value false is returned, the specified amount of time passed
without the event being set.

7.4. Queueing for an Event to Occur

A process joins the ordered queue for an event by calling the queue
function.

Prototype: void untimed_queue()

Example: m_ev.untimed_queue();

This function behaves similarly to the wait function, except that each
time the event is set, only one queued process is resumed. The queue
is maintained in order of process priority, with processes having the
same priority being ordered by time of insertion into the queue.

7. Events

 50

Note: CSIM for Java contains two identical queue methods, queue()
and untimed_queue(). The queue() method is a relic from CSIM for
C/C++. The untimed_queue() method is preferred in order to keep
consistent syntax with the untimed_wait() method. Note that a wait()
method exists in CSIM for C/C++, but does not exist in CSIM for Java
due to a conflict with a standard Java routine.

7.5. Queueing with a Time-out

If a process calls the timed_queue function, it will be suspended until
either the event is set a sufficient number of times for the process to
be activated, or until the specified amount of time has passed.

Prototype: boolean timed_queue(double timeout)

Example: result = m_ev.timed_queue(100.0);
 if (result) {...

The calling process should check the functional value to determine the
circumstances under which it was resumed. If the value true is
returned, the process was activated because the event occurred; if the
value false is returned, the specified amount of time passed without
the process being activated by the event being set.

7.6. Setting an Event

A process can put an event into the occurred state by calling the set
function.

 7. Events

 51

Prototype: void set()

Example: m_ev.set();

Calling this function causes all waiting processes and one queued
process to be resumed. If there are no waiting or queued processes,
the event will be in the occurred state upon return from the set
function. If there are waiting or queued processes, the event will be in
the not occurred state upon return. No simulation time passes during
these activities. Setting an event that is already in the occurred state
has no effect.

7.7. Clearing an Event

A process can put an event into the not occurred state by calling the
clear function.

Prototype: void clear()

Example: m_ev.clear();

Clearing an event happens in zero simulation time and no processes
are in any way affected. Clearing an event that is already in the not
occurred state has no effect.

7. Events

 52

7.8. Collecting and Reporting Statistics for Events

A set of statistics on usage can be collected for specified events.
Statistics collection for an event is initiated by executing the monitor()
method.

Prototype: void monitor()

Example: m_ev.monitor();

The standard report function automatically proceeds to “print” a report
for each monitored event. This report is as follows:

EVENT SUMMARY

event number of avg que avg time number of avg wait avg time number
of
name queue vst length queued wait vsts length waiting set
ops
--

ev 10 0.99010 1.00000 50 4.95050 1.00000 10

A separate report for all of the monitored events is produced using the
report_events() procedure, as follows:

Prototype: void report_events()

Example: report_events();

All of the events in an event_set (see below) can be monitored as
well.

Prototype: void monitor()

Example: m_evs.monitor();

 7. Events

 53

7.9. Resetting an Event

In some cases, it is necessary to reset the statistics counters for a
specific event.

Prototype: void reset()

Example: ev.reset();

Executing this statement does not affect the state of the event. The
reset and the reset_events statements each call reset_event() for all
events in the model.

7.10. Event Sets

An event set is an array of related events for which some special
operations are provided. An event set is declared as follows:

Example: EventSet m_evSet;

All events in an event set are initialized by invoking the event_set
constructor.

Prototype: EventSet(char *name, int numEvents)

Example: m_evSet = new EventSet(“events”, 10);

As with any Java array, the events in an event set are indexed from 0
to numEvents - 1.

Individual events in the event set can be accessed and then
manipulated using any of normal event functions (e.g., set, clear,
untimed_wait, timed_wait, untimed_queue, timed_queue).

7. Events

 54

Example: Event e;
 e = m_evSet.get(1);
 e.set();

Example: m_evSet.get(1).set();

A process can wait for the occurrence of any event in an event set by
calling the wait_any function.

Prototype: int wait_any()

Example: eventIndex = evSet.wait_any();

This function returns the index of the event that caused the calling
process to proceed. If multiple events in the set are in the occurred
state, the lowest numbered event is the one recognized by the calling
process. All processes that have called wait_any are activated by the
next event that occurs, and these processes all receive the same
index value.

A process can join an ordered queue for an event set by calling the
queue_any method.

Prototype: int queue_any()

Example: eventIndex = m_evSet.queue_any();

Each time any event in the event set occurs, one process in the queue
is activated. The functional value is the same as that of the wait_any
function.

A process can also do a timed_wait_any() operation at an event_set.

Prototype: int timed_wait_any(double time_out)

Example: result = m_evSet.timed_wait_any(double
time_out);

If the result is not equal to -1, then it signifies the index of the event
that caused the process to continue. If the result is equal to -1, then
the operation timed out and no event was set.

A process can also do a timed_queue_any() operation at an event_set:

 7. Events

 55

Prototype: int timed_queue_any(double time_out)

Example: result = m_evSet.timed_queue_any(double
time_out);

If the result is not equal to -1, then it signifies the index of the event
that caused the process to continue. If the result is equal to -1, then
the operation timed out and no event was set.

7.11. Inspector Methods

The following methods return information about the specified event at
the time they are called.

Prototype: Functional value:

String name() pointer to name of event

int wait_cnt() number of processes waiting for event

int queue_cnt() number of processes queued for event

int qlength() sum of wait_cnt and queue_cnt

int state() state of event:
 OCC if occurred or
 NOT_OCC if not occurred

int num_events() number of processes waiting for the event

int set_count() number of set operations

double queue_sum() sum of queue queue lengths

double wait_sum() sum of wait queue lengths

7. Events

 56

int queue_delay_count() number of queue delays

int wait_delay_count() number of wait delays

double queue_length() average queue queue length

double wait_length() average wait queue length

double queue_time() average queue queue time

double wait_time() average wait queue time

int queue_count() number queue-queue visits

int wait_count() number wait-queue visits

7.12. Status Report

The status_events function prints a report of the status of all events in
the model.

Prototype: void status_events()

Example: status_events();

For each event, the report includes its state, the number of processes
waiting for it, the number of processes queued for it, the name and id
of all waiting processes, and the name and id of all queued processes.
The report is written to the default output stream or the stream
specified in the last call to set_output_file.

 7. Events

 57

7.13. Built-In Events

A process can suspend itself until there are no other active processes
by waiting on the built-in event event_list_empty.

Example: eventListEmpty.untimed_wait();

This event is automatically set by CSIM when all processes have
terminated or are waiting for something (e.g., a facility or storage).
Modelers sometimes use this to force the initial (sim) process to wait
until all work in the system being modeled has completed. Upon
reactivation, the initial process might then produce reports.

If run length control is involved for a table, qtable, meter, or box, (see
14.3), a process can suspend itself until the run length control
mechanism signals the end of a run, by waiting for the built-in event
converged.

Example: converged.untimed_wait()

8. Mailboxes

 58

8. Mailboxes

A mailbox allows for the asynchronous exchange of data between
CSIM processes. Any process may send a message to any mailbox,
and any process may attempt to receive a message from any mailbox.

A mailbox is comprised of two FIFO queues: a queue of unreceived
messages and a queue of waiting processes. At least one of the
queues will be empty at any time. When a process sends a message,
the message is given to a waiting process (if one exists) or it is placed
in the message queue. When a process attempts to receive a
message, it is either given a message from the message queue (if one
exists) or it is added to the queue of waiting processes.

A message is a data object. If a process sends an object, it is the
responsibility of that process to maintain the integrity of the data until
it is received and processed.

8.1. Declaring and Initializing a Mailbox

A mailbox is declared in a CSIM program as follows:

Example: Mailbox m_mb;

 8. Mailboxes

 59

Before a mailbox can be used, it must be initialized by invoking the
new mailbox constructor.

Prototype: Mailbox(String name)

Example: m_mb = new Mailbox(“requests”);

A newly-created mailbox contains no messages. The mailbox name is
used only to identify the mailbox in output reports and trace
messages.

8.2. Sending a Message

A process sends a message by calling the send function.

Prototype: void send(Object msg)

Example: m_mb.send(msg);

If one or more processes are waiting on this mailbox, the process at
the head of the process queue will resume execution and will be given
this message. If no processes are waiting, this message will be
appended to the tail of the message queue. No simulation time passes
during this method call.

The message is an object. Normally, an instance of a user-defined
class is instantiated and sent to the mailbox.

8. Mailboxes

 60

8.3. Receiving a Message

A process receives a message by calling the receive function.

Prototype: Object receive()

Example: inMsg = m_md.receive();

If one or more messages (message objects) are queued at this
mailbox, the calling process is given the message at the head of the
queue and continues executing. If no messages are queued, the
process is suspended from further execution and is added to the tail of
the process queue for this mailbox.

8.4. Receiving a Message with a Time-out

Sometimes a process must not wait indefinitely to receive a message.
If a process calls the timed_receive function, it will be suspended
either until a message is received or until the specified amount of time
has passed.

Prototype: Object timed_receive(double timeout)

Example: result = m_mb.timed_receive(100.0);
 if (result ! = null) {...

The calling process can check the functional value to determine the
circumstances under which it was resumed. If the value returned is not
equal to null, the process was activated because a message was
received; if the value returned is equal to null, the specified amount of
time passed without the process being activated by the receipt of a
message.

 8. Mailboxes

 61

8.5. Collecting and Reporting Statistics for Mailboxes

A set of statistics on the usage can be collected for specified
mailboxes. Statistics collection for a mailbox is initiated by executing
the monitor method.

Prototype: void monitor()

Example: m_mb.monitor();

The standard report function automatically proceeds to “print” a report
for each monitored mailbox. This report is as follows:

MAILBOX SUMMARY

mailbox number of process process number of message message
name proc visits qlength rspTime messages qlength rspTime
--

mb 100 0.18737 0.32295 100 1.03091 1.79461

A separate report for all monitored mailboxes is produced by the
report_mailboxes() procedure:

Prototype: void report_mailboxes()

Example: report_mailboxes();

8. Mailboxes

 62

8.6. Resetting a Mailbox

In some cases, it is necessary to reset the statistics counters for a
specific mailbox.

Prototype: void reset()

Example: m_mb.reset();

Executing this statement does not affect the state of the mailbox. The
reset and reset_mailboxes statements each call reset() for all
mailboxes in the model.

8.7. Inspector Methods

The following methods return information about the specified mailbox
at the time they are called.

Prototype: Functional value:

String name() name of mailbox

int msg_count() if positive, number of unreceived
messages
if negative, magnitude is number of
waiting processes

int queue_count() number of processes queued at
mailbox

double proc_sum() sum of process queue lengths

int proc_delay_count() number of processes delayed

 8. Mailboxes

 63

int proc_count() number of processes receiving
messages

double proc_length() average process queue length

double proc_time() average process delay time

double msg_sum() sum of message queue lengths

int msg_delay_count() number of messages delayed

int msg_count() number of messages sent

double msg_length() average message queue length

double msg_time() average message delay time

8.8. Status Report

The status_mailboxes function prints a report of the status of all
mailboxes in the model.

Prototype: void status_mailboxes()

Example: status_mailboxes();

For each mailbox, the report includes the number of unreceived
messages, the number of waiting processes, and the name and id of
all waiting processes. The report is written to the default output stream
or the stream specified in the last call to set_output_file.

8. Mailboxes

 64

 9. Managing Queues

 65

9. Managing Queues

Each of the CSIM objects (facilities, storages, buffers, events and
mailboxes) consists of one or more queues (for suspended processes)
and some other structure (servers in a facility, a list of messages in a
mailbox, etc.). In some models, it is necessary to be able to
manipulate the processes in one of these queues. The queue
management features are used to accomplish this.

9.1. Process Objects and Process Structures

The class for representing processes is process: This is the object
returned when a process is requested from a CSIM object.

A process instance can be used to query the state of a process and to
change attributes of a process.

Example: Process p;

Prototype: int p.priority()

Example: pri = p.priority();

Prototype: void set_priority(int prty)

Example: p.set_priority(5);

Prototype: int identity()

Example: id = p.identity();

9. Managing Queues

 66

Prototype: Sting name()

Example: String nm = p.name();

A process can have its own user-defined structure. This structure can
be established by a process and be retrieved and examined by this
process and other processes using a process pointer.

Prototype: Object getProcessStructure();

Example: MyStruct ms = getProcessStructure();

A process can establish its own private structure.

Prototype: void setProcessStructure(Object ps)

Example: setProcessStructure(ms);

A process can retrieve a pointer to the private structure for another
process.

Prototype: Object getProcessStructure()

Example: MyStruct ms = p.getProcessStructure();

A process can set a private structure for another process.

Prototype: void setProcessStructure(Object ps)

Example: p.setProcessStructure(ps);

 9. Managing Queues

 67

9.2. Process Queues at Facilities

The queue of processes at a facility can be managed by a set of
routines.

To gain access to the first process in the process queue at a facility:

Prototype: Process first_process()

Example: Process firstProcess = m_fac.first_process();

If there are no processes in the process queue, the value returned is
null; if there are processes in the process queue, the value returned is
the first process in the queue.

Note: In these methods, when a process is retrieved, it is not removed
from the queue; the remove_process methods do that.

The pointer to the last process at the end of the process queue at a
facility (the process at the tail of the queue) can be retrieved as
follows:

Prototype: Process last_process()

Example: Process lstPrc = m_fac.last_process();

If there are no processes in the process queue, the value returned is
null; if there are processes in the process queue, the value returned is
the last process in the queue.

A specific process can be removed from the process queue at a
facility, as follows:

Prototype: Process remove_process(Process pr)

Example: Process pr = m_fac.remove_process(pr1);

9. Managing Queues

 68

The process at the head of the queue of waiting processes (the first
process) can be removed from the process queue at a facility, as
follows:

Prototype: Process remove_first_process(Process pr)

Example: Process pr1 =
m_fac.remove_first_process(pr);

A process can be placed in a facility queue; the position of this
process is determined by its priority relative to the other processes in
the queue.

Prototype: void insert_process(Process pr)

Example: m_fac.insert_process(pr);

The process_list() method returns a linked list of the processes in the
queue of waiting processes. This list is a “copy” of the queue. The
methods of a Java object List can be used to access the elements
(Processes) in this list.

Prototype: List process_list();

Example: List pList = m_facility.process_list();

9.3. Process Queues at Storages

The routines for managing processes in a storage queue are described
in this section.

The first process (the process at the head of the queue) can be
retrieved as follows:

Prototype: Process first_process()

Example: Process p = m_str.first_process();

 9. Managing Queues

 69

The last process at the end of the queue (the process at the tail of the
queue) can be retrieved as follows:

Prototype: Process last_process()

Example: Process p = m_str.last_process();

A specific process can be removed from a storage queue as follows:

Prototype: Process remove_process(Process p)

Example: Process p1 = m_str.remove_process(p);

A process can be placed in a storage queue; the position of this
process is determined by its priority relative to the other processes in
the queue.

Prototype: void insert_process(Process p)

Example: m_str.insert_process(p);

The process_list() method returns a linked list of the processes in the
queue of waiting processes. This list is a “copy” of the queue. The
methods of a Java object List can be used to access the elements
(Processes) in this list.

Prototype: List process_list();

Example: List pList = m_storage.process_list();

9.4. Process Queues at Buffers

A buffer has two queues of processes: the queue of processes waiting
for a put operation to complete and the queue of processes waiting for
a get operation to complete. These two queues are referred to as the
put-queue and the get-queue respectively.

9. Managing Queues

 70

The first process in the put-queue (the process at the head of the put-
queue) can be retrieved as follows:

Prototype: Process put_first_process()

Example: Process p = m_buf.put_first_process();

The last process at the end of the put-queue (the process at the tail of
the put-queue) can be retrieved as follows:

Prototype: Process put_last_process()

Example: Process p = m_buf.put_last_process();

A specific process can be removed from a put-queue queue as follows:

Prototype: Process put_remove_process(Process p)

Example: Process p1 = m_buf.put_remove_process(p);

A process can be placed in a buffer put-queue; the position of this
process is determined by its priority relative to the other processes in
the queue.

Prototype: void put_insert_process(Process p)

Example: m_buf.put_insert_process(p);

The process_list() method returns a linked list of the processes in the
put-queue of waiting processes. This list is a “copy” of the queue.
The methods of a Java object List can be used to access the elements
(Processes) in this list.

Prototype: List put_process_list();

Example: List pList = m_buf.put_process_list();

The first process in the get-queue (the process at the head of the get-
queue) can be retrieved as follows:

Prototype: Process get_first_process()

Example: Process p = m_buf.get_first_process();

 9. Managing Queues

 71

The last process at the end of the get-queue (the process at the tail of
the get-queue) can be retrieved as follows:

Prototype: Process get_last_process()

Example: Process p = m_buf.get_last_process();

A specific process can be removed from a get-queue as follows:

Prototype: Process get_remove_process(Process p)

Example: Process p1 = m_buf.get_remove_process(p);

A process can be placed in a buffer get-queue; the position of this
process is determined by its priority relative to the other processes in
the queue.

Prototype: void get_insert_process(Process p)

Example: m_buf.get_insert_process(p);

The process_list() method returns a linked list of the processes in the
get-queue of waiting processes. This list is a “copy” of the queue.
The methods of a Java object List can be used to access the elements
(Processes) in this list.

Prototype: List get_process_list();

Example: List pList = m_buf.get_process_list();

9. Managing Queues

 72

9.5. Process Queues at Events

An event has two queues of processes: the queue of processes doing
a wait operation and the queue of processes doing a queue operaton.
These two queues are referred to as the wait-queue and the queue-
queue respectively.

The first process of the wait-queue (the process at the head of the
wait-queue) can be retrieved as follows:

Prototype: Process first_wait_process()

Example: Process p = m_ev.first_wait_process();

The last process at the end of the wait-queue (the process at the tail of
the wait-queue) can be retrieved as follows:

Prototype: Process last_wait_process()

Example: Process p = m_ev.last_wait_process();

A specific process can be removed from a wait-queue queue as
follows:

Prototype: Process remove_wait_process(Process p)

Example: Process p = m_ev.remove_wait_process(p);

A process can be placed in an event wait-queue; the position of this
process is determined by its priority relative to the other processes in
the queue.

Prototype: void insert_wait_process(Process p)

Example: m_ev.insert_wait_process(p);

 9. Managing Queues

 73

The process_list() method returns a linked list of the processes in the
wait-queue of waiting processes. This list is a “copy” of the queue.
The methods of a Java object List can be used to access the elements
(Processes) in this list.

Prototype: List wait_process_list();

Example: List pList = m_ev.wait_process_list();

The first process of the queue-queue (the process at the head of the
queue-queue) can be retrieved as follows:

Prototype: Process first_queue_process()

Example: Process p = m_ev.first_queue_process();

The last process at the end of the queue-queue (the process at the tail
of the queue-queue) can be retrieved as follows:

Prototype: Process last_queue_process()

Example: Process p = m_ev.last_queue_process();

A specific process can be removed from a queue-queue as follows:

Prototype: Process remove_queue_process(Process p)

Example: Process p = m_ev.remove_queue_process(p);

A process can be placed in a queue-queue; the position of this
process is determined by its priority relative to the other processes in
the queue.

Prototype: void insert_queue_process(Process p)

Example: m_ev.insert_queue_process(p);

The process_list() method returns a linked list of the processes in the
queue-queue of waiting processes. This list is a “copy” of the queue.
The methods of a Java object List can be used to access the elements
(Processes) in this list.

Prototype: List queue_process_list();

9. Managing Queues

 74

Example: List pList = m_ev.queue_process_list();

9.6. Process Queues and Message Lists at Mailboxes

A CSIM mailbox consists of queue of processes waiting to receive
messages and a list of messages waiting to be received by
processes.

The first process in the process queue at a mailbox (the process at
the head of the process-queue) can be retrieved as follows:

Prototype: Process first_process()

Example: Process p = m_bx.first_process();

The last process at the end of the process queue at a mailbox (the
process at the tail of the process queue) can be retrieved as follows:

Prototype: Process last_process()

Example: Process p = m_bx.last_process();

A specific process can be removed from the process-queue at a
mailbox as follows:

Prototype: Process remove_process(Process p)

Example: Process p1 = m_bx.remove_process(p);

A process can be placed in the process queue at a mailbox; the
position of this process is determined by its priority relative to the
other processes in the queue.

Prototype: void insert_process(Process p)

Example: m_bx.insert_process(p);

 9. Managing Queues

 75

Assume that a class named Msg_c has been defined.

The first message of the message list at a mailbox can be retrieved as
follows:

Prototype: Object first_msg()

Example: Msg_c m = (Msg_c)m_bx.first_msg();

The last message at the end of the message list at a mailbox can be
retrieved as follows:

Prototype: Object last_msg()

Example: Msg_c m = (Msg_c)m_bx.last_msg();

A specific message can be removed from the message list at a
mailbox as follows:

Prototype: Object remove_message(Object m)

Example: Msg_c m1 = (Msg_c)m_bx.remove_message(m);

A message can be placed in the message list at a mailbox; the
message will be placed at the end of the message list.

Prototype: void insert_message(Object o)

Example: m_b.insert_message(m);

An instance of a message class is a message object. A pointer to a
message object is defined as follows:

Example: message *mptr;

Example: message_t mptr;

9. Managing Queues

 76

 10. Introduction to Statistics Gathering

 77

10. Introduction to Statistics Gathering

CSIM automatically gathers and reports performance statistics for
certain types of model components, including facilities and storages.
CSIM also provides four general-purpose statistics gathering tools:
tables, qtables, meters , and boxes. These tools can be used for the
following purposes:

• To obtain statistics other than mean values for facilities and
storages

• To obtain statistics on processes

• To obtain statistics for selected submodels or for the model
considered as a whole

• To obtain confidence intervals for selected statistics

• To employ the run length control algorithms provided with CSIM
(see section 16.3, Run Length Control)

Of course, any statistics can be gathered by declaring and updating
variables in a CSIM program. But the statistics gathering tools are
powerful and comprehensive, and their use will decrease the likelihood
of programming errors that lead to incorrect statistics. Formatted
reports of the statistics gathered with these tools can easily be
included in the model output.

The following steps are suggested for adding statistics gathering to a
model:

• Identify what statistics are of interest and which statistics
gathering tools are appropriate.

• Declare a globally accessible object for each statistics gathering
tool that will be used.

10. Introduction to Statistics Gathering

 78

• Initialize each statistics gathering tool, usually at the beginning of
the sim function.

• Add instrumentation (i.e., function calls) to the model to feed data
to the tools.

• Generate reports by calling the report function.

The magnitudes of the performance statistics obviously depend on the
time unit that is chosen for the model. Most of the reports produced by
the statistics gathering tools will accommodate floating point numbers
with six digits to the left of the decimal point and six digits to the right
of the decimal point. Up to nine digits can be displayed for integer
values. The time unit should be chosen to avoid performance values so
far from unity that digits of interest are not displayed.

 11. Tables

 79

11. Tables

A table is used to gather statistics on a sequence of discrete values
such as interarrival times, service times, or response times. Data
values are “recorded” in a table to include them in the statistics. A
table does not actually store the recorded values; it simply updates
the statistics each time a value is included.

The statistics maintained by a table include the minimum, maximum,
range, mean, variance, standard deviation, and coefficient of variation.
Optional features for a table allow the creation of a histogram, the
calculation of confidence intervals, and the computation of statistics for
values in a moving window.

First-time users of tables should focus on the following three sections,
which explain how to set up tables, record values, and produce
reports. Subsequent sections describe the more advanced features of
tables.

11.1. Declaring and Initializing a Table

A table is declared in a CSIM program as follows:

Example: Table tbl;

11. Tables

 80

Before a table can be used, it must be initialized by invoking the table
constructor:

Prototype: Table(char* name);

Example: Table tbl = Table(“response times”);

The table name is used only to identify the table in the output reports.
Up to 80 characters in the name will be stored by CSIM. A newly
created table contains no values and all the statistics are zero.

A table can be designated as a permanent table using the
setPermanent function.

Prototype: setPermanent(boolean t)

Example: tbl.setPermanent(true);

The information in a permanent table is not cleared when the reset
function is called, and a permanent table is not deleted when rerun is
called. In all other ways, a permanent table is exactly like any other
table. Permanent tables are often used to gather data across multiple
runs of a model. As a general rule, do not make a table permanent
unless you have a specific reason for doing so.

11.2. Tabulating Values

A value is included in a table using the tabulate function.

Prototype: void tabulate(double value)

Example: tbl.tabulate(1.0);

Tables are designed to maintain statistics on data of type double.
Data of other types, such as integer, must be cast to type double in
the call to record.

 11. Tables

 81

The record() method is equivalent to the tabulate() method:

Prototype: void record(double value)

Example: tbl.record(1.0);

11.3. Producing Reports

Reports for tables are most often produced by calling the report
procedure, which prints reports for all statistics gathering objects.

Reports can be produced for all existing tables by calling the
report_tables method; this method is part of the Model object.

Prototype: void report_tables()

Example: model.report_tables();

11. Tables

 82

The report for a table will include the table name and all statistics, as
illustrated below. If the table is empty, a message to that effect is
printed instead of the statistics.

TABLE 1: response times

minimum 0.009880 mean 2.881970
maximum 13.702809 variance 7.002668
range 13.692929 standard deviation 2.646255
observations 962 coefficient of var 0.918211

11.4. Histograms

A histogram can be specified for a table in order to obtain more
detailed information about the recorded values. The mode and other
percentiles can often be estimated from a histogram. A histogram is
specified for a table by calling the add_histogram function.

Prototype: void add_histogram(long nbucket,
 double min, double max)

Example: tbl.add_histogram(10, 0.0, 10.0);

The number of buckets in the histogram will be nbucket . The smallest
value in the first bucket will be min; the largest value in the last bucket
will be max. All buckets will have the same width of (max-
min)/nbucket . An underflow bucket and an overflow bucket will
automatically be created if needed to hold values less than min or
greater than max. The index of the underflow bucket is 0, and the
index of the overflow bucket is nbucket+1.

 11. Tables

 83

Usually, a histogram is specified for a table immediately after the table
is initialized. Additional calls can be made to add_histogram to change
the characteristics of the histogram, but only if the table is empty.

A report for a table that has a histogram will include an additional
section, as illustrated below. For each bucket in the histogram, the
following information will be displayed: the smallest value the bucket
can hold, the number of values in the bucket, the proportion of all
values that are in the bucket, the proportion of all values in the bucket
and all preceding buckets, and a bar whose length corresponds to the
proportion of values in the bucket.

lower limit

frequency

proportion
cumulative
proportion

0.00000 265 0.275468 0.275468 ********************
1.00000 219 0.227651 0.503119 *****************
2.00000 125 0.129938 0.633056 *********
3.00000 92 0.095634 0.728690 *******
4.00000 74 0.076923 0.805613 ******
5.00000 54 0.056133 0.861746 ****
6.00000 53 0.055094 0.916840 ****
7.00000 38 0.039501 0.956341 ***
8.00000 8 0.008316 0.964657 *
9.00000 8 0.008316 0.972973 *

>=10.00000 26 0.027027 1.000000 **

If leading or trailing buckets contain no values, the lines in the report
for these buckets will not be printed. This feature allows the histogram
to be output as compactly as possible without losing any information.

CSIM must save information for each bucket in a histogram.
Consequently, the storage requirements for a table that has a
histogram are proportional to the number of buckets.

11. Tables

 84

11.5. Confidence Intervals

CSIM can automatically compute confidence intervals for the mean of
the data in any table. The confidence interval calculations are enabled
by calling the confidence function.

Prototype: void confidence()

Example: tbl.confidence();

If confidence intervals have been requested, the report for a table will
have an additional section, as illustrated below.

confidence intervals for the mean after 50000 observations

level

confidence interval

rel. error

90 % 4.114119 +/- 0.296434 = [3.817684, 4.410553] 0.077648
95 % 4.114119 +/- 0.354041 = [3.760078, 4.468159] 0.078837
98 % 4.114119 +/- 0.421555 = [3.692563, 4.535674] 0.080279

Chapter 16, Confidence Intervals and Run Length Control, describes
confidence intervals in detail and explains how to interpret the
information in this report.

 11. Tables

 85

11.6. Inspector Methods

All statistics maintained by a table can be retrieved during the
execution of a model or upon its completion. The attributes of a table
(i.e., its name and moving window size) can also be retrieved.

Prototype: Functional value:

String name() name of table

int countt() number of values recorded

double min() minimum value

double max() maximum value

double sum() sum of values

double sumSquares() sum of squares of values

double mean() mean of values

double range() range of values

double var() variance of values

double stddev() standard deviation of values

double cv() coefficient of variation of values

double elapsedTime() time since last reset

Histogram histogram() histogram object in table

ConfidenceInterval getConfidenceInterval
 confidence interval object in table

11. Tables

 86

The following inspector methods retrieve information about the
histogram associated with a table:

Prototype: Functional value:

double histogram_width() width of each bucket

int histogram_bucket(int n) contents of bucket n

double histogram_high() value of max bucket

double histogram_low() value of min bucket

double histogram_num() number of buckets

double histogram_total() sum of bucket contents

Note: The number of buckets in a histogram does not include the
underflow or overflow buckets. Bucket number 0 is the underflow
bucket; bucket number 1+histogram_num() is the overflow bucket. If a
histogram has not been specified for a table, the above inspector
methods all return zero values.

The following inspector methods retrieve information about the
confidence interval associated with a table:

Prototype: Functional value:

double conf_halfwidth (double level) half width

double conf_lower (double level) lower end

double conf_upper(double level) upper end

The following inspector methods retrieve information about the run
length control associated with a table:

Prototype: Functional value:

 11. Tables

 87

int batch_size() current size of batch

int batch_count() number of batches used

boolean converged() TRUE or FALSE

double table::conf_mean() mid point of conf. int.

double table::conf_accuracy (double level)
accuracy achieved

Although most statistics are mathematically undefined if there is no
data, the corresponding inspector methods return a value of zero if the
table is empty.

The inspector methods that retrieve information about the results of run
length control are described in section 16.3, Run Length Control.

11.7. Resetting a Table

Resetting a table causes all information maintained by the table to be
reinitialized. All optional features selected for the table (e.g.,
histogram, confidence intervals, moving window) remain in effect and
are also reinitialized.

The reset function is usually used to reset all statistics gathering tools
at once. A specific table can be reset using the reset_table function.

Prototype: void reset()

Static Example: tbl.reset();

Although permanent tables are not reset by the reset function, they
can be reset explicitly by calling reset_table.

11. Tables

 88

 12. Qtables

 89

12. Qtables

A qtable is used to gather statistics on an integer-valued function of
time, such as the length of a queue, the population of a subsystem, or
the number of available resources. Every change in the value of the
function must be “noted” by calling a CSIM function. A qtable does not
actually save the functional values; it simply updates the statistics
each time the value changes. (See section 12.6 for the only exception
to this rule.)

The statistics maintained by a qtable include the minimum, maximum,
range, mean, variance, standard deviation, and coefficient of variation.
The number of changes in the functional value is maintained, as well
as the initial and final values. Optional features for a qtable allow the
creation of a histogram and the calculation of confidence intervals.

First-time users of qtables should focus on the following three
sections, which explain how to set up qtables, note changes in their
values, and produce reports. Subsequent sections describe the more
advanced features of qtables.

12. Qtables

 90

12.1. Declaring and Initializing a Qtable

A qtable is declared in a CSIM program as follows:

Example: QTable m_qtbl;

Before a qtable can be used, it must be initialized by invoking the
qtable constructor.

Prototype: QTable(char *name)

Example: m_qtbl = new QTable(“queue length”);

The qtable name is used only to identify the qtable in the output
reports. CSIM will store up to 80 characters in the name. A newly
created qtable has an initial value of zero. To create a qtable with a
non-zero initial value, call the note_value method (described below)
immediately after creating the qtable.

A qtable can be designated as a permanent qtable using the
setPermanent method.

Prototype: setPermanent(boolean t)

Example: m_qtbl. setPermanent(true);

12.2. Noting a Change in Value

The most common way for the value of a qtable to change is for it to
increase or decrease by one. Such a change would occur when a
customer joins a queue or a resource is allocated. The value of a
qtable is increased by one using the note_entry method.

Prototype: void note_entry()

 12. Qtables

 91

Example: m_qtbl.note_entry();

The value of a qtable is decreased by one using the note_exit method.

Prototype: void note_exit()

Example: m_qtbl.note_exit();

The value of a qtable can be changed to an arbitrary number using the
note_value method.

Prototype: void note_value(int value)

Example: m_qtbl.note_value(12);

12.3. Producing Reports

Reports for qtables are most often produced by calling the report
function, which prints reports for all statistics gathering objects.

Reports can be produced for all existing qtables by calling the
report_qtables function.

Prototype: void report_qtables()

Example: report_qtables();

The report for a qtable will include the qtable name and all statistics,
as illustrated below. If no time has passed since the creation or reset
of the qtable, a message to that effect is printed instead of the
statistics.

12. Qtables

 92

QTABLE 1: queue length

initial 0 minimum 0 mean 2.788416
final 4 maximum 14 variance 8.529951
entries 966 range 14 standard deviation 2.920608
exits 962 coeff of variation 1.047408

12.4. Histograms

A histogram can be specified for a qtable in order to obtain more
detailed information about the functional values. Depending on how the
qtable is being used, its histogram might give the distribution of the
queue lengths, the subsystem population, or the number of available
resources. A histogram is specified for a table by calling the
add_histogram method.

Prototype: void add_histogram(long nbucket, long
 min, long max)

Example: m_qtbl.add_histogram(10, 0, 10);

The number of buckets in the histogram will be nbucket . The smallest
value in the first bucket will be min; the largest value in the last bucket
will be max. All buckets will have the same width, which will be
rounded up to an integer if necessary. An underflow bucket and an
overflow bucket will automatically be created if needed to hold values
less than min or greater than max.

Caution: The min and max parameters of qtable_histogram are of type
int, whereas the analogous parameters of table_histogram are of type
double.

Usually, a histogram is specified for a qtable immediately after the
qtable is initialized. Additional calls can be made to histogram to

 12. Qtables

 93

change the characteristics of the histogram, but only if the qtable is
empty.

A report for a qtable that has a histogram will include an additional
section, as illustrated below. For each bucket in the histogram, the
following information will be displayed: the smallest value the bucket
can hold, the total time the functional value was in the bucket, the
proportion of time that the functional value was in the bucket, the
proportion of all functional values in the bucket and all preceding
buckets, and a bar whose length corresponds to the proportion of time
the functional value was in the bucket.

number

total time

proportion
cumulative
proportion

0 248.74145 0.249003 0.249003 ********************
1 185.45534 0.185651 0.434654 ***************
2 157.13503 0.157300 0.591954 *************
3 100.01937 0.100125 0.692079 ********
4 78.14196 0.078224 0.770303 ******
5 62.59210 0.062658 0.832961 *****
6 44.38455 0.044431 0.877392 ****
7 35.33308 0.035370 0.912762 ***
8 25.94494 0.025972 0.938735 **
9 21.48465 0.021507 0.960242 **

>= 10 39.71625 0.039758 1.000000 ***

If leading or trailing buckets contain no values, the lines in the report
for these buckets will not be printed. This feature allows the histogram
to be output as compactly as possible without losing any information.

CSIM must save information for each bucket in a histogram.
Consequently, the storage requirements for a qtable that has a
histogram are proportional to the number of buckets.

12. Qtables

 94

12.5. Confidence Intervals

CSIM can automatically compute confidence intervals for the mean
value of any qtable. The confidence interval calculations are enabled by
calling the confidence method.

Prototype: void confidence()

Example: m_qtbl.confidence();

If confidence intervals have been requested, the report for a qtable will
include an additional section, as illustrated below.

confidence intervals for the mean after 29600.000000 time units

level confidence interval rel. error
90 % 4.319412 +/- 0.491696 = [3.827715, 4.811108] 0.128457
95 % 4.319412 +/- 0.588209 = [3.731203, 4.907621] 0.157646
98 % 4.319412 +/- 0.701971 = [3.617441, 5.021382] 0.194052

Section 16.1, Confidence Intervals, describes confidence intervals in
detail and explains how to interpret the information in this report.

12.6. Inspector Methods

All statistics maintained by a qtable can be retrieved during the
execution of a model or upon its completion. The attributes of a qtable
(i.e., its name and moving window size) can also be retrieved.

Prototype: Functional value:

 12. Qtables

 95

String name() name of qtable

int entries() number of note_entry’s

int exits() number of note_exit’s

int min() minimum value

int max() maximum value

int current() current value

double sum() sum of values weighted by time

double sumSquares() sum of squared weighted

double mean() mean value

int range() range of values

double var() variance of values

double stddev() standard deviation of values

double cv() coefficient of variation of values

The following inspector methods retrieve information about the
confidence interval associated with a table:

Prototype: Functional value:

double conf_mean(double level) half width

double conf_halfwidth(double level) half width

double conf_lower(double level) lower end

double conf_upper(double level) upper end

The following inspector methods retrieve information about the run
length control associated with a table:

Prototype: Functional value:

int batch_size() current size of batch

12. Qtables

 96

int batch_count() number of batches used

boolean converged() TRUE or FALSE

double conf_mean() mid point of conf. int.

double conf_accuracy (double level) accuracy achieved

Many statistics are mathematically undefined if zero time has passed
since the creation or reset of a qtable. The corresponding inspector
methods return a value of zero in this case.

The following inspector methods retrieve information about the
histogram associated with a qtable.

Prototype: Functional value:

int hist_num() number of buckets

double hist_low() smallest value that is not underflow

double hist_high() largest value that is not overflow

double hist_width() width of each bucket

int hist_bucket(int i) total time value is in bucket i

The number of buckets in a histogram does not include the underflow
or overflow buckets. Bucket number 0 is the underflow bucket; bucket
number 1+histogram_num() is the overflow bucket. If a histogram has
not been specified for a qtable, the above inspector methods all return
zero values.

The inspector methods that retrieve information about the results of run
length control are described in section 16.3, Run Length Control.

 12. Qtables

 97

12.7. Resetting a Qtable

Resetting a qtable causes all information maintained by the qtable to
be reinitialized, except that the current value is saved for use in
computing future values. All optional features selected for the qtable
(e.g., histogram, confidence intervals, moving window) remain in effect
and are also reinitialized.

The reset function is usually used to reset all statistics gathering tools
at once. A specific qtable can be reset using the reset method.

Prototype: void reset()

Example: m_qtbl.reset();

Although permanent qtables are not reset by the reset function, they
can be reset explicitly by calling reset_qtable.

12. Qtables

 98

 13. Meters

 99

13. Meters

A meter is used to gather statistics on the flow of entities, such as
customers or resources, past a specific point in a model. Meters can
be used to measure arrival rates, completion rates, and allocation
rates. A meter can be thought of as a probe that is inserted at some
point in a model.

While a meter primarily measures the rate at which entities flow past
it, a meter also keeps statistics on the times between passages.
These interpassage times are recorded in a table, which is an integral
part of every meter.

First-time users of meters should focus on the following three
sections, which explain how to set up meters, update meters, and
produce reports. Subsequent sections describe the more advanced
features of meters.

13.1. Declaring and Initializing a Meter

A meter is declared in a CSIM program as follows:

Example: Meter m_mtr;

13. Meters

 100

Before a meter can be used, it must be initialized by invoking the
meter constructor.

Prototype: Meter(String name)

Example: m_mtr = new Meter(“system completions”);

The meter name is used only to identify the meter in the output
reports. CSIM will store up to 80 characters in the name.

13.2. Instrumenting a Model

An entity notes its passage by a meter using the note_passage
method.

Prototype: void note_passage()

Example: m_mtr.note_passage();

For the statistics to be accurate, every entity of interest must note its
passage and do so at the correct time.

 13. Meters

 101

13.3. Producing Reports

Reports for meters are most often produced by calling the report
function, which prints reports for all statistics gathering objects.

Reports can be produced for all existing meters by calling the
report_meters function.

Prototype: void report_meters()

Example: report_meters();

The report for a meter, as illustrated below, will include the meter
name, the number of passages, the passage rate, and statistics on
the interpassage times. If no time has elapsed, a message to that
effect is printed instead of the statistics.

METER 2: System completions

count 494 rate 0.988000

interpassage time statistics

minimum 0.001258 mean 1.008764
maximum 6.533026 variance 0.994894
range 6.531768 standard deviation 0.997444
observations 494 coefficient of var 0.988778

13. Meters

 102

13.4. Histograms

A histogram can be specified for the interpassage times of a meter.
This is accomplished using the add_histogram method.

Prototype: void add_histogram(long nbuckets,
 double min, double max)

Example: m_mtr.add_histogram(10, 0.0, 10.0);

The histogram for a meter is exactly the same as the histogram for a
table. See section 11.4, Histograms, for details.

13.5. Confidence Intervals

CSIM can automatically compute confidence intervals for the mean
interpassage time at a meter. The confidence interval calculations are
enabled by calling the confidence method.

Prototype: void confidence()

Example: m_mtr.confidence();

The confidence intervals for a meter are the same as the confidence
intervals for a table. See section 16.1, Confidence Intervals, for details.

 13. Meters

 103

13.6. Inspector Methods

All statistics maintained by a meter can be retrieved during the
execution of a model or upon its completion. The name of a meter can
also be retrieved.

Prototype: Functional value:

String name() name of meter

double elapsedTime() time spanned by data in interpassage
 time

int cnt() number of passages noted

double rate() rate of passages

BasicTable ip_table() handle to interpassage time table

Although the passage rate is mathematically undefined if no time has
passed, the rate method returns the value zero in this case.

The handle to a meter’s interpassage time table can be passed to the
inspector functions for a table in order to obtain interpassage time
statistics.

Example: double max_ip_time = m_mtr.ip_table().max();

If no passages have occurred, the interpassage time table is empty.
The interpassage time contributed by the first passage is the time from
the beginning of the observation period to that first passage.

13. Meters

 104

13.7. Resetting a Meter

Resetting a meter causes all information maintained by the meter to
be reinitialized, except that the time of the last passage is saved for
use in computing the next interpassage time. All optional features
selected for the meter (e.g., histogram, confidence intervals, moving
window) remain in effect and are also reinitialized.

The reset function is usually used to reset all statistics gathering tools
at once. A specific meter can be reset using the reset_meter function.

Prototype: void reset()

Example: m_mtr.reset();

 14. Boxes

 105

14. Boxes

A box conceptually encloses part or all of a model. The box gathers
statistics on the number of entities in the box (i.e., the population) and
the amount of time entities spend in the box (i.e., the elapsed time).
An entity might be a customer, a message, or a resource. Boxes are
usually used to gather statistics on queue lengths, response times,
and populations. Instrumenting a model involves inserting function calls
at the places that entities enter and exit the box.

A table and a qtable are invisible but integral parts of every box.
Statistics on the elapsed times are kept in the table, while statistics
on the population are kept in the qtable.

First-time users of boxes should focus on the following three sections,
which explain how to set up boxes, instrument a model, and produce
reports. Subsequent sections describe the more advanced features of
boxes.

14.1. Declaring and Initializing a Box

A box is declared in a CSIM program as follows:

Example: Box m_bx;

14. Boxes

 106

Before a box can be used, it must be initialized by invoking the box
constructor.

Prototype: Box(String name)

Example: m_bx = new Box(“in system”);

The box name is used only to identify the box in the output reports.
CSIM will store up to 80 characters in the name. A newly created box
is always empty. To create a non-empty box, call the enter method
(described in the following section) the appropriate number of times
immediately after creating the box.

14.2. Instrumenting a Model

An entity enters a box by calling the enter method.

Prototype: double enter()

Example: double entryTime = m_bx.enter();

This function returns a timestamp that must be saved by the entity
that entered the box. The entity exits the box by calling the exit
method and passing to it the timestamp that it received upon entry.

Prototype: void exit(double et);

Example: m_bx.exit(entryTime);

It is the responsibility of the programmer to ensure that the integrity of
the timestamp is maintained while the entity is in the box. Because
boxes may be nested or may overlap, it is advisable to make the
timestamp local to the CSIM process and to use a separate
timestamp variable for each box. An invalid timestamp (i.e., one that is
less than zero or greater than the current time) will cause an error.

 14. Boxes

 107

14.3. Producing Reports

Reports for boxes are most often produced by calling the report
function, which prints reports for all statistics gathering objects.

Reports can be produced for all existing boxes by calling the
report_boxes function.

Prototype: void report_boxes()

Example: report_boxes();

The report for a box, as illustrated below, will include the box name,
statistics on the elapsed times, and statistics on the population of the
box. If the box is empty or no time has passed since its creation or
reset, messages to that effect are printed instead of the statistics.
Note that statistics on the elapsed times reflect only those entities
that have exited the box. Entities still in the box when the report is
produced contribute to the population statistics but not to the elapsed
time statistics.

BOX 1: Queue statistics

statistics on elapsed times

minimum 0.009880 mean 2.088345
maximum 7.943915 variance 3.211423
range 7.934035 standard deviation 1.792044
observations 494 coefficient of var 0.858117

statistics on population

initial 0 minimum 0 mean
final 7 maximum 10 variance
entries 501 range 10 standard deviation
exits 494 coeff of variation

14. Boxes

 108

14.4. Histograms

A histogram can be specified for the elapsed times in a box and for the
population of a box using the following functions:

Prototype: void add_time_histogram(int nb, double
 min, double max)

Example: m_bx.add_time_histogram (10, 0.0, 10.0);

Prototype: void add_number_histogram(int nb, long
 min, long max)

Example: m_bx.add_number_histogram(10, 0, 10);

The histogram for the elapsed times is the same as the histogram for
a table. See section 11.4, Histograms, for details. The histogram for
the population of a box is the same as the histogram for a qtable. See
section 12.4, Histograms, for details

Caution: The min and max parameters of box_time_histogram are of
type double, whereas the corresponding parameters of
box_number_histogram are of type long.

 14. Boxes

 109

14.5. Confidence Intervals

Confidence intervals can be requested for the mean of the elapsed
times in a box and for the mean population of a box using the following
functions:

Prototype: void time_confidence()

Example: m_bx.time_confidence();

Prototype: void number_confidence()

Example: m_bx.number_confidence();

These two types of confidence intervals are identical to the confidence
intervals for a table and qtable, respectively. See section 16.1,
Confidence Intervals, for details.

14.6. Inspector Methods

All statistics maintained by a box can be retrieved during the
execution of a model or upon its completion. The name of a box can
also be retrieved.

Prototype: Functional value:

String name name of box

BasicTable time_table handle to elapsed time table

BasicQTable box::number_qtable handle to population qtable

14. Boxes

 110

The handle to a box’s elapsed time table can be passed to the
inspector methods for a table in order to obtain statistics on the times
that entities have spent in the box.

Example: double max_time_in_box =
 m_bx.time_table().max();

If no entities have exited the box, the table will be empty and zeros will
be returned for the undefined statistics.

The handle to a box’s population qtable can be passed to the
inspector methods for a qtable in order to obtain statistics on the
population.

Example: int max_population =
 m_bx.number_qtable->max();

If no time has passed, zero values will be returned for the undefined
statistics.

14.7. Resetting a Box

Resetting a box causes all information maintained by the box to be
reinitialized, except that the number currently present in the box is
saved for use in computing future populations. All optional features
selected for the box (e.g., histogram, confidence intervals, moving
window) remain in effect and are also reinitialized.

The reset function is usually used to reset all statistics gathering tools
at once. A specific box can be reset using the reset method.

Prototype: void reset()

Example: m_bx.reset();

 15. Advanced Statistics Gathering

 111

15. Advanced Statistics Gathering

This section describes CSIM for Java’s advanced statistics gathering
features.

15.1. Example: Instrumenting a Facility

For each facility, CSIM automatically gathers and reports the following
statistics:

· mean service time · mean queue length

· utilization · mean response time

· throughput · number of completions

Meters and boxes can easily be used to gather more detailed
statistics. The following statements show the declaration of the
needed variables:

FCFSFacility f;
Meter arrivals;
Meter departures;
Box queue_box;
Box service_box;

15. Advanced Statistics Gathering

 112

The following statements, which would normally appear in the sim
process, show the initialization of the variables:

f = new FCFSFacility("center");
arrivals = new Meter("arrivals");
departures = new Meter("completions");
queue_box = new Box("queue");
service_box = new Box("in service");

The following code shows the instrumentation of the facility:

private class Customer() extends Process {
 public Customer() {
 super(“Customer”();
 }
 public void run() {
 double timestamp1;
 double timestamp2;

 arrivals.note_passage();
 timestamp1 = queue_box.enter();
 f.reserve();
 timestamp2 = service_box.enter();
 hold (rand.exponential(0.8));
 f.release();
 service_box.exit(timestamp2);
 queue_box.exit(timestamp1);
 departures.note_passage();
 }
}

The report for the box, queue_box, would give statistics on response
times (under the heading, statistics on elapsed times) and queue
lengths (under the heading, statistics on population). The report for the
box, service_box, would give statistics on service times (under the
heading, statistics on elapsed times) and utilization (under the
heading, statistics on population). The report for the arrivals meter

 15. Advanced Statistics Gathering

 113

would give statistics on the arrival rate and interarrival times. The report
for the departures meter would give statistics on the completion rate
and intercompletion times. If the arrival and completion rates were
sufficiently similar, this quantity would be called the throughput.

Obviously, histograms could be added to any of these meters and
boxes to obtain information on the various distributions.

15.2. The Report Function

Although reports can be produced at any time for individual statistics
gathering tools, it is most common to generate reports for all tools at
the same time, usually when the simulation has converged. This can
be done by calling the report method (in the Model object).

Prototype report()

Example: model.report();

The report function produces reports for all facilities, storages, and
classes, followed by reports for all tables, qtables, meters, and boxes.
The sequence of reports begins with a header that includes the model
name, the date and time, the current simulation time, and the CPU
time used.

15.3. Resetting Statistics

CSIM provides a single function that will clear all accumulated
statistics without affecting the state of the system being modeled in

15. Advanced Statistics Gathering

 114

any way. This reset method in the Model object is most often used
when warming up a simulation. The simulation is begun with the
system in an empty state, simply as a matter of convenience. A small
number of customers is allowed to pass through the system, hopefully
taking the system closer to its equilibrium state. Then, the statistics
are reset and the simulation is run until convergence is achieved.

The reset function has a simple interface.

Prototype: void reset()

Example: model.reset();

Reset clears the statistics that are automatically gathered for facilities,
storages, events, and process classes. It also resets the statistics in
all non-permanent tables, qtables, meters, and boxes being used in
the program. Permanent tables are not affected by calling reset.

In general, resetting statistics returns all the statistical counters and
timers maintained by CSIM to their initial values, which are usually
zero. But, there are a few subtle and important exceptions to this rule.
When a qtable is reset, it remembers the current value for use in
computing future values from the relative changes specified by
note_entry and note_exit. When a meter is reset, it remembers the
time of the last passage for use in computing the next interpassage
time. When a box is reset, it remembers the number present for use in
computing future populations.

Calling reset in no way changes the state of the system being
modeled. It does not change the simulation clock; it does not affect
the streams of random numbers being used in the simulation; and it
does not affect the states of processes, facilities, storages, events,
and mailboxes. The reset function is normally called during a
simulation run, whereas the rerun function (see section 21.3.1, To
Rerun a CSIM Model) is called between successive runs.

 16. Confidence Intervals and Run Length Control

 115

16. Confidence Intervals and Run Length
Control

Most simulations are designed so they converge to what might be
called the "true solution" of the model. But, because a simulation can
only be run for a finite amount of time, the exact true solution can
never be known. This issue gives rise to two important questions:
What is the accuracy in the results of a simulation’s output? How long
should a simulation be run in order to obtain a given accuracy? These
questions can be answered using confidence intervals and run-length
control algorithms.

Using an ad hoc technique instead of the methods described in this
section can be dangerous as well as wasteful. Running a simulation
for too short an amount of time can result in performance statistics
that are highly inaccurate. Running a simulation for an unnecessarily
long amount of time wastes computing resources and delays the
completion of the simulation study. And, without some type of formal
analysis, the errors in simulation results cannot be quantified.

16.1. Confidence Intervals

A confidence interval is a range of values in which the true answer is
believed to lie with a high probability. The interval can be specified in
two equivalent ways, either by specifying the midpoint of the interval
(which could be considered the "best guess" for the true answer) and
the half-width of the interval, or by specifying the lower and upper

16. Confidence Intervals and Run Length Control

 116

bounds of the interval. CSIM reports the confidence interval in both
formats, as illustrated below:

4.114119 +/- 0.296434 = [3.817684, 4.410553]

The probability that the true answer lies within the interval is called the
confidence level. Since a confidence level of 100% would result in an
infinitely wide confidence interval, confidence levels from 90% to 99%
are most often used. Be aware that there is always a small probability
(dictated by the confidence level) that the true answer lies outside the
confidence interval.

Confidence intervals can be automatically generated for the mean
values in any table, qtable, meter, or box simply by calling one of the
following functions immediately after the statistics object has been
initialized.

Example: m_table.confidence()

Example: m_qtable.confidence()

Example: m_meter.confidence()

Example: m_box.time_confidence()

Example: m_box.number_confidence()

The technique used to calculate confidence intervals is called batch
means analysis. It is beyond the scope of this manual to describe the
mathematics underlying this technique, but any good simulation text
should provide details.

 16. Confidence Intervals and Run Length Control

 117

If confidence intervals have been requested for a table, qtable, meter,
or box, the statistics report will include a section like the following:

confidence intervals for the mean after 50000 observations

level confidence interval rel. error

 90 % 4.114119 +/- 0.296434 = [3.817684, 4.410553] 0.077648
 95 % 4.114119 +/- 0.354041 = [3.760078, 4.468159] 0.078837
 98 % 4.114119 +/- 0.421555 = [3.692563, 4.535674] 0.080279

Notice that confidence intervals are calculated for three commonly
used confidence levels: 90%, 95%, and 98%. The confidence intervals
are reported in both of the formats described previously. The relative
error measures the accuracy in the midpoint of the interval as an
estimate of the true answer. It is defined to be the half-width divided by
the lower bound of the interval. Like any relative error, its value
suggests how many accurate digits there are in the estimate.

The algorithm for computing confidence intervals groups the
observations into fixed size batches and uses only complete batches.
For this reason, the number of observations used in the calculation of
the confidence intervals may be slightly less than the number of
observations used in computing the other performance statistics. For
example, in the above report, 50,000 observations were used to
calculate the confidence intervals. The part of the report not shown
may give the mean, variance, standard deviation, etc., based on
50,472 observations.

16. Confidence Intervals and Run Length Control

 118

The algorithm also requires a minimum number of observations for its
results to be valid. This minimum number cannot be known before
running the simulation because it depends on the amount of
correlation found in the statistic. If a report is produced before sufficient
observations have been obtained, the message

> insufficient observations to compute
confidenceintervals

will appear in place of the confidence intervals. To obtain confidence
intervals, run the simulation longer or use the run length control
algorithm.

16.2. Inspector Functions

All values calculated by the confidence interval algorithm can be
retrieved during the execution of a model or upon its completion. For a
table object m_table and confidence level cl:

Exampe: Functional value:

int m_table.batch_size() size of batch

int m_table.batch_count() number of batches

double m_table.conf_mean() midpoint of interval

double m_table.conf_halfwidth(cl) half-width of interval

double table.conf_lower(cl) lower bound of interval

double table.conf_upper(cl) upper bound of interval

double table.conf_accuracy(cl) accuracy achieved

 16. Confidence Intervals and Run Length Control

 119

For the QTable object m_qtable and confidence level cl:

Example: Functional value:

int m_qtable.batch_size() size of batch

int m_qtable.batch_count() number of batches

double m_qtable.conf_mean() midpoint of interval

double m_qtable.conf_halfwidth(cl) half-width of interval

double m_qtable.conf_lower (cl) lower bound of interval

double m_qtable.conf_upper(cl) upper bound of interval

double m_qtable.conf_accuracy(cl) accuracy achieved

If confidence intervals have not been requested or if there have not
been sufficient observations to calculate confidence intervals, all of the
above functions return zero values.

To inspect confidence interval information for meters and boxes, pass
to the appropriate function listed above a pointer returned by one of the
following functions: meter::ip_table, box::time_table, or
box::number_qtable.

16.3. Run Length Control

If the reported confidence intervals show that the needed accuracy has
not been achieved, a simulation could be run again for a longer amount
of time. A second, longer simulation has two disadvantages: repeating
part of the simulation is wasteful, and it may not be clear how much
longer to run the simulation the second time.

16. Confidence Intervals and Run Length Control

 120

A better method is to use the run length control algorithm that is built
into CSIM. This algorithm monitors the confidence interval as it
narrows and automatically terminates the simulation when the desired
accuracy has been achieved.

To use run length control, choose a performance measure that will be
used to decide when the simulation should terminate. Instrument the
model to gather statistics on this performance measure using a table,
qtable, meter, or box. Immediately after the statistics gathering object
has been initialized, call the appropriate function below.

For a Table object:

Prototype: void run_length(double accuracy, double
 conf_level, double max_time)

Example: m_tbl.run_length (0.01, 0.95, 10000.0);

For a QTable object:

Prototype: void run_length(double accuracy, double
 conf_level, double max_time)

For a Meter object:

Prototype: void run_length(double accuracy, double
 conf_level, double max_time)

For a Box object:

Prototype: void time_run_length(double accuracy,
double
 conf_level, double max_time)

 16. Confidence Intervals and Run Length Control

 121

Prototype: void box::number_run_length(double,
accuracy,
 double conf_level, double, max_time)

The accuracy parameter specifies the maximum relative error that will
be allowed in the mean value of this performance measure. A value of
0.1 is usually used to request one digit of accuracy, 0.01 is used to
request two digits of accuracy, and so forth. The conf_level parameter
is the confidence level and usually has a value between 0.90 and 0.99.
The max_time parameter places an upper bound on how long the
simulation will run. If the specified accuracy cannot be achieved within
this time, the simulation will terminate and a warning message will
appear in the report.

In the main CSIM process, place the following call to the wait function.

model.converged.untimed_wait();

Converged is a built-in event (in the Model object) that does not need
to be declared or initialized. This event is set when the run length
control algorithm determines that the requested accuracy has been
achieved or when the maximum time has passed.

If run length control has been enabled, the statistics report will include
a section like the following:

results of run length control using confidence intervals

 cpu time limit 10.0 accuracy requested 0.005000
 cpu time used 1.8 accuracy achieved 0.005000

 95.0% confidence interval: 0.998735 +/- 0.004969 = [0.993767, 1.003704]

The confidence interval is reported in both formats for the confidence
level that was specified. If the requested accuracy was not achieved or
if there were not enough observations to calculate confidence intervals,
a warning message will appear in the report.

16. Confidence Intervals and Run Length Control

 122

The mechanics for running a simulation until multiple performance
measures have been obtained to desired accuracy are simple. Call the
appropriate run length function for several statistics gathering objects
and then wait on the “converged” event as many times as there are
statistics to converge. However, there are some subtleties in the
theory underlying this procedure. Persons interested in this topic
should read the section on output analysis in the textbook, Simulation
Modeling and Analysis, by Law and Kelton [LaKe 99].

16.4. Caveats

Confidence intervals attempt to bound the errors in performance
statistics caused by running a simulation for a finite amount of time.
They in no way measure the errors caused by the model being an
unfaithful representation of the actual system.

All known techniques for computing confidence intervals are heuristics.
Detecting and removing correlation from performance data is a
mathematically difficult problem. Confidence intervals should always
be considered to be estimates.

In spite of these limitations, it is our belief that confidence intervals and
run length control play an essential role in any simulation study.
Simply running a simulation for a “long time” and hoping that the
performance measures will be highly accurate is an unprofessional and
dangerous approach.

 17. Process Classes

 123

17. Process Classes

Process classes are used to segregate data for reporting purposes. A
set of usage statistics is automatically maintained for each process
class. These are "printed" whenever a report or a report_classes
statement is executed. In addition, facility information (from
report_facilities) is kept by process class, when process classes
exist. Obtaining usage statistics for process classes at the facilities
is the most common use of this feature. See section 19.3, CSIM
Report Output, for details about the generated reports.

17.1. Declaring and Initializing Process Classes

To declare a process class:

Example: ProcessClass c;

A process class must be initialized via the ProcessClass constructor
statement before it can be used in any other statement.

Prototype: ProcessClass(String name)

Example: ProcessClass c = new ProcessClass(
“low priority”)

17. Process Classes

 124

17.2. Using Process Classes

To have the executing process join a process class:

Prototype: void setProcessClass(ProcessClass c)

Example: setProcessClass(c);

To retrieve a pointer to the ProcessClass within an active process:

Prototype: ProcessClass getProcessClass()

Example: ProcessClass c = getProcessClass();

If no setProcessClass statement is executed for a process, that
process is automatically a member of the “default” class. A report
statement will not print process class statistics for the default process
class. A report_classes statement will print process class statistics
for the default process class, but ONLY if it is the only process class.
If any other process class is defined, report_classes will only report on
non-default process classes.

Note: It is necessary to use the collect method at a facility or the
collect_class_facility_all statement to obtain usage by process
classes at the facilities (see section 4.11, Collecting Class-Related
Statistics).

17.3. Producing Reports

Reports for process classes are most often produced by calling the
report function, which prints reports for all of the CSIM objects.
Reports can be produced for all existing process classes by calling
the report_classes function. The report for a process class gives the

 17. Process Classes

 125

class id, the class name, the number of entries into the class, the
average lifetime for a process in this class, the average number of hold
operations executed by jobs in this class, the average time per hold
and the average wait time per job in this class.

PROCESS CLASS SUMMARY

 id name number lifetime hold count hold time wait time
--

 0 default 493 4.05680 0.99594 4.05680 0.00000
 1 low priority 293 229.66986 0.54266 2.27873 227.39113
 2 high priority 198 2.18412 1.00000 1.67845 0.50567

17.4. Resetting Process Classes

The statistics associated with a process class can be reset as
follows:

Prototype: void reset()

Example: c.reset();

The statistics associated with all of the process classes can be reset
as follows:

Prototype: void reset_process_classes()

Example: reset_process_classes();

17. Process Classes

 126

17.5. Inspector Methods

These methods each return a statistic that describes some aspect of
the usage of the specified process class. The type of the returned
value for each of these methods is indicated.

Prototype: Functional Value:

int id() id of process class

String name() pointer to name of process class

int cnt() number of processes in process
 class

double lifetime() total time for all processes in
 process class

int holdCnt() total number of holds for all
 processes in process class

double holdTime() total hold time for all processes
 in process class

 18. Random Numbers

 127

18. Random Numbers

Most simulations are random number driven. In such simulations,
random numbers are used for interarrival times, service times,
allocation amounts, and routing probabilities. For each application of
random numbers in a simulation, a distribution must be chosen. The
distribution determines the likelihood of different values occurring. A
distribution is uniquely specified by the name of its family (such as
uniform, exponential, or normal) and its parameter values (such as the
mean and standard deviation). Discussions of distributions and their
uses in models can be found in many textbooks [LaKe 99].

Random numbers generated by computers are actually pseudo-
random. A sequence of values is generated using a recurrence relation
that calculates the next value in the sequence from the previous value.
The sequence is begun by specifying a starting value called a seed. A
good random number generator has the property that the numbers it
produces have no discernible patterns that distinguish them from truly
random numbers.

Most CSIM users need only read the following two sections, which
describe single stream random number generation. Those interested in
building multiple stream simulations should read the remaining
sections as well.

18. Random Numbers

 128

18.1. Single Stream Random Number Generation

CSIM includes a library of functions for generating random numbers
from more than 11 different distributions. Continuous distributions have
values that are floating-point numbers; values from these distributions
are most often used for amounts of time. Discrete distributions have
values that are integers; values from these distributions are often used
for quantities of resources.

The following prototypes are used for the functions that generate
values from continuous distributions. The parameters min and max
specify the minimum and maximum values that will be generated. The
parameters mean, var, stddev, and mode specify respectively the
mean, variance, standard deviation, and mode of the distribution. All of
these distributions are methods in the Random class; the default
object in the Random class is rand. The rand object has a number of
methods that produce samples from different probability distributions.

Prototype: double uniform(double min, double max)

Example: double x = rand.uniform(double min, double
max)

Prototype: double triangular(double min, double max,
 double mode)

Prototype: double exponential(double mean)

Prototype: double erlang(double mean, double var)

Prototype: double hyperexponential(double mean, double
var)

 18. Random Numbers

 129

Prototype: double normal(double mean, double stddev)

Prototype: double lognormal(double mean, double stddev)

Prototype: double hypoexponential(double mn, double
var)

The following prototype is for the function that generates values from a
discrete distribution. The parameters min and max specify the
minimum and maximum values that will be generated. The parameter
mean specifies the mean of the distribution.

Prototype: int uniform_int(int min, int max)

Example: int n = rand.uniform_int(int minV, int maxV)

18.2. Changing the Seed of the Single (Default) Stream

By default, the single stream (the rand object) from which all random
numbers are generated is seeded with the value of 1. Unless the seed
is changed, every execution of every CSIM program will use the same
sequence of random numbers. The seed can be changed by calling
the setSeed method in the rand object.

Prototype: void setSeed(int n)

Example: rand.setSeed(13579);

The parameter is the positive integer that is to be used as the seed.
The choice of the seed value will not affect the randomness of the
numbers that are produced. Although it is most common to call
setSeed once at the beginning of a CSIM program, the setSeed
function can be called any number of times and from any place within
a program.

18. Random Numbers

 130

18.3. Single versus Multiple Streams

In a single stream simulation, all random numbers are produced from a
single stream of pseudo-random integers. The random numbers used
for a particular purpose (for example, interarrival times) are generated
from a subsequence of these random integers. It is of concern to some
people that the subsequence of integers may not be “as random” as
the stream from which they were extracted. This concern can be
alleviated by using multiple separate streams of pseudo-random
integers, one for each application of random numbers in the model.
So, these multiple separate streams would be used for the service
times at each facility, for the allocation amounts of each storage, and
so forth.

Multiple streams are also used to guarantee that exactly the same
sequence of random numbers is used for the interarrival times (for
example) in two different models. This technique is called common
random numbers and is described in simulation texts.

There is virtually no difference in the time required to generate random
numbers from a single stream or from multiple streams. Multiple
stream simulations require slightly more programming: the multiple
streams must be declared, initialized, and (perhaps) seeded, and each
call to a function that generates random numbers must specify the
stream to be used.

 18. Random Numbers

 131

18.4. Managing Multiple Streams

A stream of random numbers is declared in a CSIM program using the
class Random.

Example: Random *s;

Before a stream can be used, it must be initialized by instantiating a
new Random object:

Prototype: Random() or Random(int s)

Example: Random m_s = new Random();

By default, Random objects are created with seeds that are spaced
100,000 values apart. CSIM contains a table of 100 such seed values;
if more than 100 streams are created, the seed values are reused.

The seed value for any stream (Random object) can be changed by
calling the setSeed function.

Prototype: void setSeed(int n)

Example: m_s.setSeed(24681);

The parameter is a positive integer that is to be used as the new seed.
Although it is most common to call setSeed once for each stream at
the beginning of a CSIM program, streams can be reseeded any
number of times and at any place in the program.

18. Random Numbers

 132

18.5. Multiple Stream Random Number Generation

The same distributions are available for generating random numbers
from multiple streams as are available for generating random numbers
from the default (single) stream.

In all ways, the methods and their parameters are exactly the same for
single stream and multiple stream use. It is the programmer’s
responsibility to ensure that a stream is used for only one purpose and
that a separate stream is used for each application of random numbers
in the model, if this is the desired behavior.

 19. Output from CSIM

 133

19. Output from CSIM and the Model Class

In order for a simulation model to be useful, output indicating what
occurred must be produced so that it can be analyzed. The following
kinds of output can be produced from CSIM:

• Reports

CSIM always collects usage and queueing information on facilities and
storage units. In addition, it will collect summary information from
tables, qtables, histograms and qhistograms, if any were created by
the user. All of this information can be printed via various report
statements.

• Status reports

Throughout the execution of the model, CSIM collects information on
current status. This information will be printed via various status
statements.

If no report statement is specified, CSIM will not generate any output
(although the user can generate customized output by gathering data
through the various information retrieval statements, doing calculations
on it if desired, and printing it).

19.1. The Model Class

Every CSIM model extends the Model class. This class provides
much of the functionality required by the model. The Model

19. Output from CSIM

 134

constructor is normally invoked by using the super method from the
CSIM model constructor:

Example: public class App extends Model {
 public static void main(String args[]){
 App model = new App();

 ...
 }
 public App() {
 super(“App”);
 }
 public run() {
 start(new Sim()):
 }
 ...
 }

The start method (in the Model class) is used to initiate the first
process in the model. The other processes are initiated by the add
method.

Prototype: public class Model()
 public class Model(String name)

Prototype: public void start(Process p)
 public void add(Process p)

The run method in the model is invoked by the Java thread package.
Every CSIM process must have a run method.

The Model class maintains the simulation time clock; at any time, the
value of this clock is the current point in simulated time. The value of
this clock is available through the clock() method:

Prototype: double clock()

Example: double startTime = model.clock();

 19. Output from CSIM

 135

19.2. Generating Reports

19.2.1. Partial Reports

A partial report can contain information on just one type of object or
just the header, using the following methods in the Model class:

Prototype: void report_hdr()

Example: model.report_hdr()

Prototype: void report_facilities()

Prototype: void report_storages()

Prototype: void report_buffers()

Prototype: void report_classes()

Prototype: void report_events()

Prototype: void report_mailboxes()

Prototype: void report_tables()

Prototype: void report_qtables()

Prototype: void report_meters()

Prototype: void report_boxes()

Where:

• report_hdr() prints the header of the report

• report_facilities() prints the usage statistics for all facilities defined
in the model

• report_storages() prints the usage statistics for all storage units
defined in the model

19. Output from CSIM

 136

• report_buffers() prints the usage statistics for all buffers defined in
the model

• report_classes() prints the process usage statistics for all process
classes defined in the model

• report_events() prints the usage statistics for all events defined in
the model and for which the monitor method has been invoked

• report_mailboxes() prints the usage statistics for all mailboxes
defined in the model and for which the monitor method has been
invoked

• report_tables() prints the summary information for all tables (with
histograms and confidence intervals)

• report_qtables() prints the summary information for all qtables
(with histograms and confidence intervals)

• report_meters() prints the summary information for all meters (with
histograms and confidence intervals)

• report_boxes() prints the summary information for all boxes (with
histograms and confidence intervals)

Notes:

Details of the contents of these reports can be found in section 19.3,
CSIM Report Output.

19.2.2. Complete Reports

A complete report contains all of the sub-reports.

Prototype: void report()

Example: model.report()

Notes:

• The sub-reports appear in the order:

 19. Output from CSIM

 137

• report_hdr
• report_facilities
• report_storages
• report_buffers
• report_classes
• report_events
• report_mailboxes
• report_tables
• report_qtables
• report_meters
• report_boxes

• Details of the contents of these reports can be found in section
19.3, CSIM Report Output.

19.2.3. To Change the Model Name:

Prototype: void setName(String name)

Example: model.setName("prototype system");

Where:

• name is the new name for the simulation model (as a quoted
string or type char*)

Notes:

name appears as the model name in the report header (in report_hdr
and report).

Unless changed by this statement, the model name will be the name
specified by the Model constructor. If no name is specified for the
Model constructor, the model name will be def.

To retrieve the current model, use the name method:

Prototype: String name()

19. Output from CSIM

 138

Example: String m_name = model.name();

19.3. CSIM Report Output

The output generated by the report statements present information on
the simulation run as it has progressed so far. The sub-reports that
comprise the overall report are:

• Header

• Report on facility usage (if any facilities were declared)

• Report on storage usage (if any storage units were declared)

• Report on buffer usage (if any buffers were declared)

• Report on the process classes (if more than one process class
(the default process class) has been declared)

• Report on the monitored events

• Report on the monitored mailboxes

• Summary for each table (with histogram and confidence interval)
declared

• Summary for each qtable (with histogram and confidence interval)
declared

• Summary for each meter (with histogram and confidence interval)
declared

• Summary for each box (with histogram and confidence interval)
declared

The following tables give a complete description of each of these sub-
reports.

 19. Output from CSIM

 139

19.3.1. Report_Hdr Output

Output Heading Meaning

Revision CSIM version number

System System the simulation was run on, e.g.,

SUN Sparc

Model Model name (see Model constructor or

set_model_name statement)

Date and time Date and time that report was printed

Ending Simulation Time Total simulated time

Elapsed Simulation Time Simulated time since last reset

CPU Time Real CPU time used since last report

19. Output from CSIM

 140

19.3.2. Report_Facilities Output

Output Heading Meaning

 Facility Summary

 facility name Name (for a facility set, the index is appended)

 service discipline Service discipline (when one was defined)

 Means

 service time Mean service time per request

 util Mean utilization (busy time divided by elapsed

time)

 throughput Mean throughput rate (completions per unit

time)

 queue length Mean number of requests waiting or in service

 response time Mean time at facility (both waiting and in service)

 Counts

 completion count Number of requests completed

Notes:

• When computing averages based on the number of requests for
facilities, the number of completed requests is used. Thus, any
requests that are waiting or in progress when the report is printed
do not contribute to these statistics.

• If collection of process class statistics is specified, then the above
items are repeated on a separate line for each process class that
uses the facility.

 19. Output from CSIM

 141

19.3.3. Report_Storages Output

Output Heading Meaning

Storage Summary

 storage name Name of storage unit

 size Size of storage unit

Means (see note below)

 alloc amount Mean amount of storage per allocate request

 alloc count Number of allocates

 dealloc amount Mean amount of storage per deallocate request

 util Average percentage of storage allocated over

time

 in-que length Mean time requests are waiting

 in-queue time Average time a request waits

Notes:

• When computing averages based on the number of requests for
storage, the number of completed requests is used. Thus, any
requests that are waiting or in progress when the report is printed
do not contribute to these statistics.

19. Output from CSIM

 142

19.3.4. Report_Buffers Output

Output Heading Meaning

Buffer Summary

buffer name Name of storage unit

 size Size of storage unit

 Means

get amt Mean amount of space per get

get qlen Average queue length for gets

get resp Average response time for gets

get count Number of gets

put amt Mean amount of space per put

put qlen Average queue length for puts

put resp Average response time for puts

put count Number of puts

 19. Output from CSIM

 143

19.3.5. Report_Classes Output

Output Heading Meaning

Process class summary

id Process class id

name Process class name

number Number of processes belonging to this class

lifetime Mean simulated time per process in this class

hold ct Mean number of hold statements per process in

this class

hold time Mean hold time per process in this class

wait time Mean wait time per process in this class

(lifetime - holdtime)

Notes:

• If no process classes are specified, the report for the default class
(every process begins as a member of this class) is not provided.
If any process classes are specified, then the report includes the
default class.

19. Output from CSIM

 144

19.3.6. Report_Events Output

Output Heading Meaning

Event Summary

Event name Name of event

Number of queue

vst

Total number of entries to queue queue

Avg queue length Average length of queue queue

Avg time queued Average time in queue queue

Number of wait

vsts

Total number of entries to wait queue

Avg wait length Average length of wait queue

Avg time waiting Average time in wait queue

Number of set ops

Number of set operations at event

 19. Output from CSIM

 145

19.3.7. Report_Mailboxes Output

Output Heading Meaning

Mailbox

Summary

Mailbox name Name of mailbox

Number of proc

visits

Number of processes doing receives

Process qlength Average process queue length

Process rspTime Average process response time

Number of

messages

Number of messages sent

Message qlength Average number of messages in the mailbox

Message rspTime Average time for messages in the mailbox

19. Output from CSIM

 146

19.3.8. Report_Tables Output

Output Heading Meaning

Tables

minimum Minimum value recorded

maximum Maximum value recorded

range Maximum - minimum

observations Number of entries in table

mean Average of values recorded

variance Variance of values recorded

standard deviation Square root of variance

coefficient of var. Standard deviation divided by the mean

Confidence Intervals

Observations Number of observations used to compute

interval

Level Probability that interval contains true mean

Confidence interval Two forms: Mid-point +/- half-width

 Lower limit - upper limit

Re. error Relative error: half-width divided by lower limit

 19. Output from CSIM

 147

Histograms

Lower limit Low value for this bucket

Frequency Number of entries in this bucket

Proportion Fraction of total number of entries that are in

this bucket

Cumulative proportion Fraction of total number of entries that are in

this bucket and all lower buckets

19.3.9. Report_Qtables Output

Output Heading Meaning

Qtables and Qhistograms

Initial Initial state value

Final Final state value

Entries Number of entries to states

Exits Number of exits from states

Minimum Minimum state value

Maximum Maximum state value

Range Range of state values

Mean Mean state value (time-weighted)

Variance Variance of state values

Standard deviation Square root of variance

Coeff. of variation Coefficient of variation: standard deviation

divided by mean

19. Output from CSIM

 148

Confidence Intervals

Observations Number of observations used to compute

interval

Level Probability that interval contains true mean

Confidence Interval Two forms: Mid-point +/- half-width

 Lower limit - upper limit

Rel. error Relative error: half-width divided by lower limit

Histograms

Lower limit Low value for this bucket

Frequency Number of entries in this bucket

Proportion Fraction of total number of entries that are in

this bucket

Cumulative proportion Fraction of total number of entries that are in

this bucket and all lower buckets

Notes:

• All histogram output for qtables is grouped by state value, where
each interval except the last includes only one state value. The
last bucket contains all state values greater than the value covered
by the penultimate value.

 19. Output from CSIM

 149

19.3.10. Report_Meters Output

Output Heading Meaning

Meters

Count

Number of entries noted

Rate Rate at which entries are noted

Interpassage time statistics (see Tables table above)

Confidence Intervals (see Tables table above)

Histograms (see Tables table above)

19.3.11. Report_Boxes Output

Output Heading Meaning

Boxes

Statistics on elapsed times (see Tables table above)

Confidence Intervals (see Tables table above)

Histograms (see Tables table above)

Statistics on population (see Qtables)

Confidence Intervals (see Qtables table above)

Histograms (see Qtables table above)

19. Output from CSIM

 150

19.4. Redirecting Output Files

By default, CSIM output is written to file stdout. The CSIM output can
be redirected to a different file using the method setOutputFile.

Prototype: void setOutputFile(String fileName)

Example: model.setOutputFile(“model.out”);

The output can also be directed to a print stream:

Prototype: void setOutputStream(PrintStream s)

Example: PrintStream s = Files.Setfile(“model.out”);
 model.setOutputStream(s);

The stream form is useful if the model will be generating output in
addition to the standard CSIM output.

19.5. Generating Status Reports

The status_reports methods in the Model class can be used to give
details on the state of the objects in the model.

 19. Output from CSIM

 151

19.5.1. Partial Reports

Prototype: void status_next_event_list()

Example: model.status_next_event_list()

Prototype: void status_events()

Prototype: void status_mailboxes()

Prototype: void status_facilities()

Prototype: void status_storages()

Prototype: void status_buffers()

Where:

• status_next_event_list prints the pending state changes for
processes

• status_events prints the status of all events defined in the model

• status_mailboxes prints the status for all mailboxes defined in the
model

• status_facilities prints the status of all facilities defined in the
model

• status_storages prints the status of all storages defined in the
model

• Details of the contents of these reports are in the sections of this
document that discuss their related objects.

19. Output from CSIM

 152

19.5.2. Complete Reports

Prototype: void dump_status()

Notes:

• The sub-reports appear in the order:
• status_next_event_list
• status_events
• status_mailboxes
• status_facilities
• status_storages
• status_buffers

Each of the above status statements is callable, so a "customized"
status report can be created.

 20. Tracing Simulation Execution

 153

20. Tracing Simulation Execution

A simulation program, like any other complex software, can be difficult
to debug and verify that it is correct. To aid in this, CSIM can produce
a log of trace messages during the execution of a simulation. A one-
line trace message is produced each time an interesting change in the
state of the simulation occurs.

Even a short simulation run can generate an enormous number of
trace messages. For this reason, you should try to be selective when
enabling different tracing options.

20.1. Tracing all State Changes

The generation of trace messages for all state changes is enabled
using the trace_on function. The tracing is disabled using the trace_off
function.

Prototype: void enableTrace(boolean attr)

Example: model.enableTrace(true);

Example: model.enableTrace(false);

Trace messages can be turned on and off as desired during a
simulation. Logic can even be added to a simulation to turn on trace
messages when a specific condition is detected.

20. Tracing Simulation Execution

 154

20.2. Format of Trace Messages

Each trace message contains the current simulation time, the name
and sequence number (id) and the priority of the process that caused
the state change, and a description of the state change. Sample trace
messages are shown below.

time process id pri status

0.716 customer 4 1 use facility cpu for 0.070

0.716 customer 4 1 reserve facility cpu

0.716 customer 4 1 hold for 0.070

0.716 customer 4 1 sched proc: t = 0.070, id = 4

0.787 customer 4 1 release facility cpu

20.3. What Is and Is Not Traced

Ideally, every occurrence that changes the state of a CSIM object will
generate a trace message. In particular, any occurrence that causes
time to pass should be traced.

Occurrences that do not produce trace messages include 1) the
generation of random numbers, 2) the updating of performance
statistics, and 3) the production of reports. Obviously, non-CSIM
operations such as updates of local variables cannot produce trace
messages.

 20. Tracing Simulation Execution

 155

20.4. Redirecting Trace Output

By default, trace messages are written to file stdout. Trace messages
can be redirected to a different file using the methods setTraceFile and
setTraceStream.

Prototype: void setTraceFile(String fileName)

Example: model.setTraceFile(“trace.out”);

The trace messages can also be directed to a print stream:

Prototype: void setTraceStream(PrintStream s)

Example: PrintStream s = Files.Setfile(“trace.out”);
 model.setTraceStream(s);

20. Tracing Simulation Execution

 156

 21. Miscellaneous

 157

21. MISCELLANEOUS

21.1. Real Time

Although internally the model only deals with simulated time, the
running of the model takes place in real time.

21.1.1. To Retrieve the Current Real Time:

Prototype: String time_of_day()

Example: String tod = model.timeOfDay();

Where:

• tod is the actual time of day string

Notes:

• The format of the returned string is:

Month dd,yyyy hh:mm:ss AM/PM Timezone
Example:
August 14, 2005 9:32:46 PM CDT.

21. Miscellaneous

 158

21.1.2. To Retrieve the Amount of CPU Time Used by the Model:

Prototype: double executionTime()

Example: double t = model.executionTime();

Where:

• t is the amount of CPU time, in seconds, that has been consumed
by the model thus far (type double)

21.2. Creating a CSIM Program

The usual way to create a CSIM for Java program is as follows:
• Create a Java program file (Name.java)

• In the file, insert the following import statements:

• import com.mesquite.csim.*;
• import com.mesquite.csim.Process;
• import com.mesquite.csim.file.Files;
• import java.io.*;

• In the file, create the public class Name as follows:
• public class Name extends Model {

 public static void main(String args[]) {
 model = new Name();
 model.run();
 model.report();
 }
 public Name() {
 super(“Name”);

 21. Miscellaneous

 159

 }
 public void run() {
 start(new Sim());
 }
 private static Name model;
 . . .

• Add a Sim process to the model:
• private class Sim extends Process {

 public Sim() {
 super(“Sim”):
 }
 public void run() {
 // code in Sim process
 }

• The tasks of the Sim process could include the following:
• Instantiate the simulation objects, such as facilities,

etc.
• Add additional processes to the model
• Allow the model to operate until the ending condition

occurs
• Exit (back to the run method in the Name object)

21.3. Rerunning or Resetting a CSIM Model

It may be useful to run a model multiple times with different values, or
run multiple models in the same program.

21. Miscellaneous

 160

21.3.1. To Rerun a CSIM Model:

The model can be initiated as many times as necessary. Every time
the model.run() statement is executed, the model is reinitialized.

21.3.2. To Clear Statistics without Rerunning the Model:

Prototype: void reset()

Example: model.reset();

Notes:

• reset will cause the following to occur:
• All statistics for facilities and storage units are cleared.
• All non-permanent table structures are cleared
• All remaining facilities, storage units, events, etc., are

eliminated
• The simulated time clock is set to zero

• The variable clock is not altered.

• Time intervals for facilities, storage units and qtables that began
before the reset are tabulated in their entirety if they end after the
reset.

• This feature can be used to eliminate the effects of start-up
transients.

 21. Miscellaneous

 161

21.4. Error Handling

Currently, all CSIM errors are detected and execution is stopped. It is
anticipated that in a future version of CSIM for Java, the programmer
will have the option of “catching” CSIM errors.

21.5. Output File Selection

CSIM allows the user to select where various types of output should
be sent. The default file for all of these is stdout. The following files
can be specified:

• Output file - for reports and status dumps

• Error file - for error messages

• Trace file - for traces

21.5.1. To Change the Stream to which a Given Type of Output is
Sent:

Prototype: void setOutputStream(PrintStream ps)

Prototype: void setTraceStream(PrintStream ps)

Example: PrintStream ps = Files.Setfile(“file.txt”);

 model.setOutputStream(ps);

 model.setTraceStream(ps);

21. Miscellaneous

 162

Where:

• ps is an instance of PrintStream

21.6. Running Java for CSIM Programs

A CSIM program needs access to the CSIM package in order to both
compile a model into class files and to run it. A program is normally
compiled with the Java archive (jar) file named csimForJava.jar. If
the command line technique is used to compile and run the model, the
command would be:

 javac -classpath <path for csimForJava.jar>;.
 prog.java

The program can be executed using the command:

java -classpath <path for csimForJava.jar>;. prog

 22. Error Messages

 163

22. Error Messages

A CSIM program that detects a problem can print the following error
messages. Currently, a Runtime exception is thrown. In future
versions, there will be provisions for the program to catch and handle
these errors. Right now, the program prints the message associated
with the error and then terminates.

22.1. Runtime Exceptions

The following runtime exceptions can be thrown by CSIM for Java:

? currentModel: Not inside any model

? checkThread: current thread not active thread

? schedule: interval cannot be negative

? facility: tried to free unassigned server

? hyperexponential: var < mean*mean

? triangular: parameter error

? uniform: max < min

? uniform_int: max < min

? storage: allocate amt > capacity

? storage: deallocate amt + available > capacity

22. Error Messages

 164

22.2. Illegal State Exceptions

The following illegal state exceptions can be thrown by CSIM for Java:

? add: model not running

? start: model already running

? setOutputStream: not initialize

? nextEvent: No more events

? eventSet; could not find event

22.3. Print Message and Exit

CSIM for Java can generate the following message:

? setTraceFile: could not open trace file

 23. Acknowledgments

 165

23. Acknowledgments

• Teemu Kerola assisted in the initial implementation of CSIM. He
also designed and implemented the MONIT event logging feature
and the post-run analysis program for the SUN.

• Bill Alexander has provided consultation on the wisdom of many
proposed features.

• Leonard Cohn suggested using mailboxes.

• Ed Rafalko of Eastman Kodak provided the changes required to
have CSIM available on the VMS operating system.

• Rich Lary and Harry Siegler of DEC have provided code for the
VMS version of CSIM. They also suggested a number of
modifications that have improved the performance of CSIM
programs.

• Geoff Brown of Cornell University did most of the work for the HP-
300 version. He also provided the note on CSIM on the NeXT
System.

• Jeff Brumfield of The University of Texas at Austin critiqued many
aspects CSIM. He and Kerola suggested process classes.

• Connie Smith of L & S Systems did much of the work on the
Macintosh version.

• Kevin Wilkinson of HP Labs did most of the work on the HP Prism
support.

• Murthy Devarakonda of IBM T.J. Watson Research Labs did most
of the work on IBM RS/6000 support.

• Jeff Brumfield provided the ideas, code, and documentation on
meters, boxes, confidence intervals, and run length control. He

23. Acknowledgments

 166

also improved the format of the output reports and added the
additional probability distributions.

• Beth Tobias rewrote the CSIM manual.

• Jorge Gonzales helped test and debug CSIM18.

• Dawn Childress revised and reformatted the CSIM18 manuals.

• Conor Davis led the design and implementation of CSIM for Java

• Lisa Wells edited and helped produce the CSIM for Java
documentation.

 24. List of References

 167

24. List of References

[Brow88] Brown, R., Calendar Queues: A Fast O(1) Priority
Queue Implementation for the Simulation Event Set
Problem, Communications of the ACM, (31, 10),
October, 1988, pp. 1220-1227.

[KeSc87] Kerola, T. and H. Schwetman, Monit: A Performance
Monitoring Tool for Parallel and Pseudo-Parallel
Programs, Proceedings of the 1987 ACM
SIGMETRICS Conference on Measurement and
Modeling of Computer Systems, ACM/SIGMETRICS,
May, 1987, pp. 163-174.

[LaKe99] Law, A. and D. Kelton, Simulation Modeling and
Analysis, third edition, (McGraw-Hill, 1999).

[MaMc73] MacDougall, M.H. and J.S. McAlpine, Computer
System Simulation with ASPOL, Symposium on the
Simulation of Computer Systems, ACM/SIGSIM,
June, 1973, pp. 93-103.

[MacD74] MacDougall, M.H., Simulating the NASA Mass Data
Storage Facility, Symposium on the Simulation of
Computer Systems, ACM/SIGSIM, June 1974, pp. 33-
43.

[MacD75] MacDougall, M.H., Process and Event Control in
ASPOL, Symposium on the Simulation of Computer
Systems, ACM/SIGSIM, August, 1975, pp. 39-51.

24. List of References

 168

 [Schw86] Schwetman, H.D., CSIM: A C-Based, Process-
Oriented Simulation Language, Proceedings of the
1986 Winter Simulation Conference, December, 1986,
pp. 387-396.

[Schw88] Schwetman, H.D., Using CSIM to Model Complex
Systems, Proceedings of the 1988 Winter Simulation
Conference, December, 1988, pp. 246-253; also
available as Microelectronics and Computer
Technology Corporation, Technical Report ACA-ST-
154-88.

 [Schw90b] Schwetman, H.D., Introduction to Process-Oriented
Simulation and CSIM, Proceedings of the 1990
Winter Simulation Conference, December, 1990, pp.
154-157.

[Schw94] Schwetman, H.D., CSIM17: A Simulation Model-
Building Toolkit, Proceedings of the 1994 Winter
Simulation Conference, December, 1994. pp. 464-
470.

[Schw95] Schwetman, H.D., Object-Oriented Simulation
Modeling with C++/CSIM17, Proceedings of the 1995
Winter Simulation Conference, December, 1995.

[Schw96] Schwetman, H.D., CSIM18 - The Simulation Engine,
Proceedings of the 1996 Winter Simulation
Conference, December, 1996.

[Schw97] Schwetman, H.D., Data Analysis and Automatic Run
Length Control in CSIM18, Proceedings of the 1997
Winter Simulation Conference, Atlanta, GA,
December, 1997

 24. List of References

 169

[Schw98] Schwetman, H.D., Model-Based Systems Analysis
Using CSIM18, Proceedings of the 1998 Winter
Simulation Conference, Washington, DC, December.
1998

[Schw99] Schwetman, H.D., Model, Then Build: A Modern
Approach to Systems Development Using CSIM18,
Proceedings of the 1999 Winter Simulation
Conference, Phoenix, AZ, December, 1999

[Schw00a] Schwetman, H.D., Finding the Best System
Configuration: An Application of Simulation and
Optimization, Proceedings of the 2000 European
Simulation Multiconference, Gent, Belgium, May,
2000 (Society for Computer Simulation)

[Schw00b] Schwetman, H.D., Optimizing Simulations with
CSIM18/OptQuest: Finding the Best Configuration,
Proceedings 2000 Winter Simulation Conference,
Orlando, FL, December, 2000

[Schw01] Schwetman, H.D., CSIM19: A Powerful Tool For
Building Systems Models, Proceedings 2001 Winter
Simulation Conference, Washington, DC, December,
2001

24. List of References

 170

 25. Sample Program

 171

25. Sample Program

A sample CSIM for Java program follows. This program is a model of
an M/M/1 queueing system. The process gen includes a while loop,
which generates arriving customers at appropriate intervals
(exponentially distributed with mean iarTime), each represented by a
job process. These customers contend for the facility on a first come,
first served basis. As each customer gains exclusive use of the
facility, they delay for a service period (again exponentially distributed,
but with mean srvTime) and then depart. Model behavior statistics are
automatically collected at the FCFS_facility.

Sample Program to Simulate Single Server Facility

// Generic application: App.java

import com.mesquite.csim.*;
import com.mesquite.csim.Process;
import com.mesquite.csim.file.Files;
import java.io.*;

public class App extends Model {

 public static void main(String args[]) {
 App model = new App();
 m_s = Files.Setfile("App.out");
 model.setOutputStream(m_s);
 model.run();
 model.report();
 }

 public App() {
 super("App");
 }
 public void run() {

25. Sample Program

 172

 try {
 start(new Sim());
 }
 catch (Exception e) {
 m_s.println("csim error: " +
e.getMessage());
 }
 }

 private static final double simTime = 10000.0;
 private static final double iarTime = 2.0;
 private static final double srvTime = 1.0;
 private FCFSFacility m_fac;
 private static PrintStream m_s;

 private class Sim extends Process {
 public Sim() {
 super("Sim");
 }
 public void run() {
 m_fac = new FCFSFacility("fac", 1);
 add(new Gen());
 hold(simTime);
 }
 }

 private class Gen extends Process {
 public Gen() {
 super("Gen");
 }
 public void run() {
 while(true) {
 add(new Job());
 hold(rand.exponential(iarTime));
 }
 }
 }

 private class Job extends Process {

 25. Sample Program

 173

 public Job() {
 super("Job");
 }
 public void run() {
 m_fac.use(rand.exponential(srvTime));
 }
 }
}

The output from an execution of this model is a follows:

 CSIM for Java Simulation Report

 App

 September 20, 2005 8:19:48 AM CDT

 Ending Simulation time: 10002.227
 Elapsed Simulation time: 10002.227
 Execution (CPU) time: 0.861

FACILITY SUMMARY

facility service service through- queue response compl
name disc time util. put length time count

fac fcfs 1.00954 0.512 0.50679 1.01980 2.01229 5069

25. Sample Program

 174

 26. Reserved Words

 175

26. Reserved Words, Structures, and More

26.1. Statement and Reserved Words

Usage Object Section

Box(char* name) Box 14.1

Box::enter (); Box 14.2

Box::exit (double enterTime); Box 14.2

Box::name(); Box 14.6

Box::number_confidence(); Box 14.5

Box::number_histogram(long nbkt, long min,
long max);

Box 14.4

Box::number_moving_window(long); Box 14.6

Box::number_Qtable(); Box 14.6

Box::number_run_length(double acc, double
confLev, double maxTime);

Box 14.5

Box::report(); Box 14.3

Box::reset(); Box 14.7

Box::time_confidence(); Box 14.5

Box::time_histogram(long nbkt, double xmin,
double xmax);

Box 14.4

26. Reserved Words

 176

double xmax);

Box::time_run_length(double acc, double
confLev, double maxTime);

Box 14.5

Box::time_table(); Box 14.6

Buffer(char *name, long size) Buffer 6.1

Buffer::current(); Buffer 6.7

Buffer::get(const long amt); Buffer 6.3

Buffer::get_count(BUFFER b); Buffer 6.7

Buffer::get_current_count(); Buffer 6.7

Buffer::get_first_Process(); Buffer 9.4

Buffer::get_insert_Process(Process_t p); Buffer 9.4

Buffer::get_last_Process(); Buffer 9.4

Buffer::get_remove_Process(Process_t p); Buffer 9.4

Buffer::get_timeQueue(); Buffer 6.7

Buffer::get_total(); Buffer 6.7

Buffer::name(); Buffer 6.7

Buffer::put(const long amt); Buffer 6.2

Buffer::put_count(); Buffer 6.7

Buffer::put_current_count(); Buffer 6.7

Buffer::put_first_Process(); Buffer 9.4

Buffer::put_insert_Process(Process_t p); Buffer 9.4

Buffer::put_last_Process(); Buffer 9.4

Buffer::put_remove_Process(Process_t p); Buffer 9.4

Buffer::put_total(); Buffer 6.7

Buffer::reset(); Buffer 6.5

 26. Reserved Words

 177

Buffer::size(); Buffer 6.7

Buffer::timed_get(const long amt, const
double t);

Buffer 6.6

Buffer::timed_put(const long amt, const
double t);

Buffer 6.6

Buffer_put_timeQueue(BUFFER b); Buffer 6.7

clock() Utility 2.2

collect_class_Facility_all(); Facility 4.11

cputime(); Utility 21.1

dump_status(); Utility 19.5

erlang(mean,var) Random 18.1

Event(name) Event 7.1

Event::clear() Event 7.7

Event::first_queue_Process(); Event 9.5

Event::first_wait_Process(); Event 9.5

Event::insert_queue_Process(Process_t p); Event 9.5

Event::insert_wait_Process(Process_t p); Event 9.5

Event::last_queue_Process(); Event 9.5

Event::last_wait_Process(); Event 9.5

Event::monitor(); Event 7.8

Event::name(); Event 7.11

Event::qlen(); Event 7.11

Event::queue(); Event 7.4

Event::queue_cnt(); Event 7.11

Event::queue_count(); Event 7.11

Event::queue_delay_count(); Event 7.11

26. Reserved Words

 178

Event::queue_length(); Event 7.11

Event::queue_sum(); Event 7.11

Event::queue_time(); Event 7.11

Event::remove_queue_Process(Process_t p); Event 9.5

Event::remove_wait_Process(Process_t p); Event 9.5

Event::reset(); Event 7.9

Event::set() Event 7.6

Event::set(); Event 7.6

Event::state() Event 7.11

Event::state(); Event 7.11

Event::timed_queue(double); Event 7.5

Event::timed_queue_any(double); Event 7.10

Event::timed_wait(double); Event 7.3

Event::untimed_queue() Event 7.4

Event::untimed_wait() Event 7.2

Event::untimed_wait(); Event 7.2

Event::wait_cnt(); Event 7.11

Event::wait_count(); Event 7.11

Event::wait_delay_count(); Event 7.11

Event::wait_length(); Event 7.11

Event::wait_sum(); Event 7.11

Event::wait_time(); Event 7.11

Event_set(char* name, long numEvents) Event_set 7.10

Event_set::count(); Event_set 7.11

Event_set::monitor(); Event_set 7.10

 26. Reserved Words

 179

Event_set::name(); Event_set 7.11

Event_set::num_Events(EVENT*); Event_set 7.11

Event_set::queue_any(); Event_set 7.11

Event_set::timed_wait_any(double); Event_set 7.10

Event_set::wait_any(); Event_set 7.10

exponential(double mean) Random 18.1

Facility(String name) Facility 4.1

Facility::class_completions(Process_class*); Facility 4.12

Facility::class_qlen(PROCESSCLASS); Facility 4.12

Facility::class_qlength(ProcessClass); Facility 4.12

Facility::class_resp(ProcessClass); Facility 4.12

Facility::class_serv(ProcessClass); Facility 4.12

Facility::class_tput(ProcessClass); Facility 4.12

Facility::class_util(ProcessClass); Facility 4.12

Facility::collect_class_Facility(); Facility 4.11

Facility::completions(); Facility 4.12

Facility::first_Process(); Facility 9.2

Facility::insert_Process(Process_t p); Facility 9.2

Facility::last_Process(); Facility 9.2

Facility::name(); Facility 4.12

Facility::num_busy(); Facility 4.12

Facility::num_servers(); Facility 4.12

Facility::qlen(); Facility 4.12

Facility::qlength(); Facility 4.12

Facility::release(); Facility 4.3

26. Reserved Words

 180

Facility::release(long srvrIndex); Facility 4.7

Facility::remove_Process(Process_t p); Facility 9.2

Facility::reserve(); Facility 4.3

Facility::reset(); Facility 4.5

Facility::resp(); Facility 4.12

Facility::serv(); Facility 4.12

Facility::server_completions(long srvrIdx); Facility 4.12

Facility::server_serv(long srvrIdx); Facility 4.12

Facility::server_tput(long srvrIdx); Facility 4.12

Facility::server_util(long srvrIdx); Facility 4.12

Facility::service_disp(); Facility 4.12

Facility::status(); Facility 4.12

Facility::timed_reserve(double); Facility 4.9

Facility::timeslice(); Facility 4.10

Facility::tput(); Facility 4.12

Facility::use(double t); Facility 4.2

Facility::util(); Facility 4.12

getProcessClass(); ProcessClass 17.2

hold(double holdTime); Process 2.3

hyperexponentail(double mean, double var) Random 18.1

hypoexponential(double mn, double var) Random 18.1

identity() Process 3.7

lognormal(double mean, double stddev) Random 18.1

Mailbox(char* name) Mailbox 8.1

Mailbox::first_msg(); Mailbox 9.6

 26. Reserved Words

 181

Mailbox::first_Process(); Mailbox 9.6

Mailbox::insert_msg(message_t m); Mailbox 9.6

Mailbox::insert_Process(Process_t p); Mailbox 9.6

Mailbox::last_msg(); Mailbox 9.6

Mailbox::last_Process(); Mailbox 9.6

Mailbox::monitor(); Mailbox 8.5

Mailbox::msg_cnt(); Mailbox 8.7

Mailbox::msg_count(); Mailbox 8.7

Mailbox::msg_delay_count(); Mailbox 8.7

Mailbox::msg_length(); Mailbox 8.7

Mailbox::msg_sum(); Mailbox 8.7

Mailbox::msg_time(); Mailbox 8.7

Mailbox::proc_count(); Mailbox 8.7

Mailbox::proc_delay_count(); Mailbox 8.7

Mailbox::proc_length(); Mailbox 8.7

Mailbox::proc_sum(); Mailbox 8.7

Mailbox::proc_time(); Mailbox 8.7

Mailbox::queue_cnt(); Mailbox 8.7

Mailbox::receive(long msg) Mailbox 8.3

Mailbox::receive(long* msg); Mailbox 8.3

Mailbox::remove_msg(message_t msg); Mailbox 9.6

Mailbox::remove_Process(Process_t p); Mailbox 9.6

Mailbox::reset(); Mailbox 8.6

Mailbox::send(long msg); Mailbox 8.2

Mailbox::send(ojbect* msg) Mailbox 8.2

26. Reserved Words

 182

Mailbox::timed_receive(long*, double); Mailbox 8.4

Mailbox_::name(); Mailbox 8.7

message::get_next(); Message 9.6

Meter(char* name) Meter 13.1

Meter::cnt(); Meter 13.6

Meter::confidence(); Meter 13.5

Meter::histogram(long nbkts, double min,
double max);

Meter 13.4

Meter::ip_table(); Meter 13.6

Meter::name(); Meter 13.6

Meter::note_passage(); Meter 13.2

Meter::rate(); Meter 13.6

Meter::report(); Meter 13.3

Meter::reset(); Meter 13.7

Meter::run_length(double acc, double conLev,
double maxTime);

Meter 13.5

Meter::start_time(); Meter 13.6

Model.status_Buffers(); Buffer 6.8

Model.status_Events(); Event 7.12

Model.status_facilities() Facility 4.13

Model.status_facilities(); Facility 4.13

Model.status_Mailboxes(); Mailbox 8.8

model::reset(); Utility 21.3

Model::setName(const char*); Model 19.2.3

priority(); Process 3.6

Process::get_struct(); Process 9.1

 26. Reserved Words

 183

Process::identity(); Process 9.1

Process::name(); Process 3.7

Process::name(); Process 9.1

Process::priority(); Process 9.1

Process::restart(); Process 9.1

Process::set_priority(long pr); Process 9.1

Process::set_struct(void* strct); Process 9.1

Process_class::cnt(); Process_class 17.5

ProcessClass(name) ProcessClass 17.1

ProcessClass::holdcnt(); ProcessClass 17.5

ProcessClass::holdtime(); ProcessClass 17.5

ProcessClass::id(); ProcessClass 17.5

ProcessClass::lifetime(); ProcessClass 17.5

ProcessClass::name(); ProcessClass 17.5

ProcessClass::reset(); ProcessClass 17.4

Qtable(name) Qtable 12.1

Qtable::cnt(); Qtable 12.6

Qtable::conf_accuracy(double confLev); Qtable 12.6

Qtable::conf_halfwidth(double confLev); Qtable 12.6

Qtable::conf_lower(double confLev); Qtable 12.6

Qtable::conf_mean(); Qtable 12.6

Qtable::conf_upper(double confLev); Qtable 12.6

Qtable::confidence(); Qtable 12.5

Qtable::converged(); Qtable 12.5

Qtable::cur(); Qtable 12.6

26. Reserved Words

 184

Qtable::current(); Qtable 12.6

Qtable::cv(); Qtable 12.6

Qtable::entries(); Qtable 12.6

Qtable::exits(); Qtable 12.6

Qtable::histogram(long nbkts, long min, long
max);

Qtable 12.4

Qtable::histogram_bucket(long i); Qtable 12.6

Qtable::histogram_high(); Qtable 12.6

Qtable::histogram_low(); Qtable 12.6

Qtable::histogram_num(); Qtable 12.6

Qtable::histogram_total(Q); Qtable 12.6

Qtable::histogram_width(); Qtable 12.6

Qtable::initial(); Qtable 12.6

Qtable::max(Q); Qtable 12.6

Qtable::mean(); Qtable 12.6

Qtable::min(); Qtable 12.6

Qtable::name(); Qtable 12.6

Qtable::note_entry(); Qtable 12.2

Qtable::note_exit(); Qtable 12.2

Qtable::note_state(long st); Qtable 12.2

Qtable::note_value(long v); Qtable 12.2

Qtable::range(); Qtable 12.6

Qtable::report (); Qtable 12.3

Qtable::reset(); Qtable 12.7

Qtable::run_length(double accur, double
confidLev, double maxTime);

Qtable 12.5

 26. Reserved Words

 185

Qtable::state(); Qtable 12.6

Qtable::stddev(); Qtable 12.6

Qtable::sum(); Qtable 12.6

Qtable::sum_square(); Qtable 12.6

Qtable::var(); Qtable 12.6

Random() Random 18.4

Random::erlang(double, double); Random 18.5

Random::exponential(double mn) Random 18.5

Random::hypoexponential(double, double); Random 18.5

Random::lognormal(double, double); Random 18.5

Random::reseed(long); Random 18.2

Random_normal(NIL,mean,stddev); **? Random 18.5

report(); Utility 19.2

report_hdr(); Utility 19.2

reset() Utility 21.3

set_priority(long pr); Process 3.6

setOutputFile(FILE*); Utility 21.5

setProcessClass(); ProcessClass 17.2

status_next_Event_list(); Utility 19.5

Storage(char *name, long amt) Storage 5.1

Storage::add_store(long amount); Storage 5.9

Storage::alloc(long amount); Storage 5.2

Storage::allocate(long amount); Storage 5.2

Storage::available(); Storage 5.8

Storage::busy_amt(); Storage 5.8

26. Reserved Words

 186

Storage::capacity(); Storage 5.8

Storage::dealloc(long); Storage 5.3

Storage::deallocate(long); Storage 5.3

Storage::first_Process(); Storage 9.3

Storage::insert_Process(Process_t p); Storage 9.3

Storage::last_Process(); Storage 9.3

Storage::name(); Storage 5.8

Storage::number_amt(); Storage 5.8

Storage::qlength(); Storage 5.8

Storage::queue_cnt(); Storage 5.8

Storage::release_cnt(); Storage 5.8

Storage::release_total(); Storage 5.8

Storage::remove_Process(Process_t p); Storage 9.3

Storage::request_amt(); Storage 5.8

Storage::request_cnt(); Storage 5.8

Storage::request_total(); Storage 5.8

Storage::reset(); Storage 5.5

Storage::time(); Storage 5.8

Storage::timed_allocate(long, double); Storage 5.7

Storage::waiting_amt(); Storage 5.8

Table(name) Table 11.1

Table::add_histogram(long, double, double); Table 11.4

Table::batch_count(); Table 11.6

Table::batch_size(); Table 11.6

Table::cnt(); Table 11.6

 26. Reserved Words

 187

Table::conf_accuracy(double confLev); Table 11.6

Table::conf_halfwidth(double confLev); Table 11.6

Table::conf_lower(double confLev); Table 11.6

Table::conf_mean(); Table 11.6

Table::conf_upper(double); Table 11.6

Table::confidence(); Table 11.5

Table::converged(); Table 11.6

Table::cv(); Table 11.6

Table::histogram_bucket(long); Table 11.6

Table::histogram_high(); Table 11.6

Table::histogram_low(); Table 11.6

Table::histogram_num(); Table 11.6

Table::histogram_total(); Table 11.6

Table::histogram_width(); Table 11.6

Table::max(); Table 11.6

Table::mean(); Table 11.6

Table::min(); Table 11.6

Table::name(); Table 11.6

Table::range(); Table 11.6

table::record(double val); Table 11.2

table::report() Table 11.3

table::reset(); Table 11.7

Table::run_length(double, double, double); Table 11.5

table::setPermanent Table 11.1

Table::stddev(); Table 11.6

26. Reserved Words

 188

Table::sum(); Table 11.6

Table::sum_square(); Table 11.6

Table::tabulate(double); Table 11.2

Table::var(); Table 11.6

terminate() Process 3.5

triangular(double mn, double mx, double
mode)

Random 18.1

uniform(double mn, double mx) Random 18.1

uniform_int(double mn, double mx) Random 18.1

 26. Reserved Words

 189

26. Reserved Words

 190

