

Getting Started with CSIM for Java – For CSIM C/C++ Users Page 1

Getting Started with CSIM for Java

 For CSIM C/C++ Users

Introduction

CSIM for Java is a library of Java™ classes and routines to give Java programmers the
functionality of the CSIM library for discrete event simulations, while mimicking the style of
CSIM models. This document is a tutorial for programmers who are familiar with CSIM
and are moving to the Java programming language. A separate document is available for
Java programmers who are not already familiar with CSIM.

Example

The M/M/1 queue is a model of a basic system. A CSIM version of an M/M/1 queue is
included as an appendix. In the Java version, the model is a class that extends the class
Model. All of the necessary definitions are imported using the import statements:
import com.mesquite.csim.*;
import com.mesquite.csim.Process;
import com.mesquite.csim.file.Files;
import java.io.*;

In this example, the class that is the model is named App (and the file containing this class
definition is App.java). The class App includes the required main() method.

public class App extends Model {
 public static void main(String args[]) {
 App model = new App();
 m_s = Files.Setfile("App.out");
 model.setOutputStream(m_s);
 model.run();
 model.report();
 }
 public App() {
 super("App");
 }
 public void run() {
 start(new Sim());
 }

 private static final double simTime = 10000.0;
 private static final double iarTime = 2.0;
 private static final double srvTime = 1.0;
 private FCFSFacility m_fac;
 private static PrintStream m_s;
// processes (see below)
}

Getting Started with CSIM for Java – For CSIM C/C++ Users Page 2

CSIM for Java uses Java threads as processes in the model (analogous to CSIM processes).
Most of the details of dealing with threads and threadGroups are handled by the model class and
the Process class.

The main() method creates an instance of App named model. The main() method then
initializes a PrintStream named m_s, and then makes m_s the OutputStream for the model. The
model calls its run() method. Note: The file containing App must be named App.java, and
the main() method must be in this class.

The App constructor calls its base class (Model) using the super statement. The App.run
method starts the Sim process using the App.start() method. The App.start() method should
be called only once per invocation of an App object.

The global variables include the model parameters (simTime, iarTime and srvTime) plus the
declarations for the facility and the PrintStream objects. By making m_s a globally accessible
object, the processes can add information to the output file, and by making m_fac globally
accessible, all of the processes of the model can access the facility.

The remainder of the model consists of three processes:

• Sim – controls the execution of the model

• Gen – generates the arriving customers (jobs), and

• Job – represents the individual entities “using” the server at the facility.

The Sim process appears as follows:
 private class Sim extends Process {
 public Sim() {
 super("Sim");
 }
 public void run() {
 m_fac = new FCFSFacility("fac", 1);
 add(new Gen());
 hold(simTime);
 }
 }

The constructor calls the Process constructor using the super() statement. The run method is
called by the thread package when the thread begins execution. In this example, the Sim
method instantiates the facility, invokes the Gen process (using the add() statement), and
holds for the duration of the model (hold(simTime)).
Note: In CSIM for Java, the scheduling discipline for the facility is specified by the type of
the facility (unlike CSIM, which calls the set_servicefunc() function to change the scheduling
discipline).

In this example, the scheduling discipline for m_fac is “first come, first served” (FCFS).

Getting Started with CSIM for Java – For CSIM C/C++ Users Page 3

The Gen process appears as follows:
 private class Gen extends Process {
 public Gen() {
 super("Gen");
 }
 public void run() {
 while(true) {
 add(new Job());
 hold(rand.exponential(iarTime));
 }
 }
 }

In the Gen process, the run method executes “forever” (really until the model terminates).
During each iteration of the While(true)-loop, the Gen process invokes a Job process and
then holds for an exponentially distributed interarrival interval (the mean interval is specified
by the value of iarTime).
The Job process appears as follows:

 private class Job extends Process {
 public Job() {
 super("Job");
 }
 public void run() {
 m_fac.use(rand.exponential(srvTime));
 }
 }

In the Job process, the run method calls the use() method for the m_fac object. This use
method operates in exactly the same manner as the use() method for a CSIM process. The
stream of random numbers is the rand stream and the distribution of the service intervals is
an exponential function with mean srvTime.
The output for this model is as follows:

 CSIM/Java Simulation Report

 March 27, 2005 5:05:42 PM CST

 Ending Simulation time: 10000.000
 Elapsed Simulation time: 10000.000
 Execution (CPU) time: 0.831

FACILITY SUMMARY

facility service service through- queue response compl
name disc time util. put length time count
--
fac fcfs 1.00954 0.512 0.50690 1.02003 2.01229 5069

Getting Started with CSIM for Java – For CSIM C/C++ Users Page 4

A CSIM programmer will find most of the familiar structures, features, etc. from the
C/C++ version in CSIM for Java; in particular:

• processes

• facilities (see above)

• storages

• buffers

• events and event-sets

• mailboxes

• tables and qtables

• meters and boxes

• a subset of the probability distributions

• reports

• model control, including reset

Because CSIM for Java is a Java application, models can be developed and executed on any
system with the Java Development Kit and Java Runtime Environment installed.

The User’s Guide, available at www.mesquite.com/documentation, has a complete description
of all of the structures and features in CSIM for Java.

CSIM 19 is a trademark of Mesquite Software. Java is a registered trademark of Sun Microsystems.

Getting Started with CSIM for Java – For CSIM C/C++ Users Page 5

Appendix: CSIM Version of M/M/1 Queue

// Example for CSIM/Java

#include "cpp.h"
#include <stdio.h>

const double simTime = 10000.0;
const double iarTime = 2.0;
const double srvTime = 1.0;

facility *m_fac;
FILE *s;

void gen();
void job();

extern "C" void sim()
{
 create("sim");
 s = fopen("java1.out", "w");
 set_output_file(s);
 m_fac = new facility("fac");
 gen();
 hold(simTime);
 report();
}

void gen()
{
 create("gen");
 while(true) {
 job();
 hold(exponential(iarTime));
 }
}

void job()
{
 create("job");
 m_fac->use(exponential(srvTime));
}

The output for this model is as follows:
 C++/CSIM Simulation Report (Version 19.0 for MS Visual C/C++)

 Sun Mar 27 17:12:55 2005

 Ending simulation time: 10000.000
 Elapsed simulation time: 10000.000
 CPU time used (seconds): 0.040

FACILITY SUMMARY

facility service service through- queue response compl
name disc time util. put length time count
--
fac fcfs 1.00954 0.512 0.50690 1.02003 2.01229 5069

