

Getting Started with CSIM for Java – For Java Programmers Page 1

Getting Started with CSIM for Java
 For Java Programmers

Introduction

CSIM for Java™ is a library of Java classes and routines that give Java programmers the
functionality of the CSIM library for discrete event simulations. This document is a tutorial
for Java programmers who are not familiar with the CSIM toolkit. A separate document is
available for C/C++ programmers who are new to Java, but are familiar with CSIM 19.

The M/M/1 Queue

The M/M/1 queue is a model of a system with one server and an unbounded queue for
waiting customers. In a single server queue such as the M/M/1, there is a sequence of
customers, with each customer arriving at successive points in time. An arriving customer
requests use of the server. If the server is not busy, the arriving customer gets the server,
allows a “service interval (of time)” to pass, releases the server, and departs as a completed
transaction. If the server is busy (being used by another, earlier-arriving customer), the
newly arriving customer joins the queue for waiting customers. When a customer releases
the server and departs, the queue of waiting customers is checked; the customer at the head
of the queue, if there is one, is given use of the server and removed from the queue.

The key parameters for this system are the time intervals between arriving customers and
service time intervals for each customer. In most systems, the interarrival intervals are
unequal (varying), as are the service intervals. One way to describe varying intervals is to say
that they are described by a probability distribution. A common probability distribution that
describes these kinds of varying intervals is the negative exponential distribution.

The notation “M/M/1 queue” specifies a single server queue (the 1) with interarrival
intervals from a negative exponential distribution (the first M) and with service intervals
from a negative exponential distribution (the second M).

Using CSIM for Java, a simulation model of an M/M/1 queue can be constructed with a
facility (a simulated resource with a single server and a queue for waiting customers) and a
sequence of processes that mimic the behavior of the sequence of arriving customers.

An M/M/1 Queue in CSIM for Java

This section describes how to model an M/M/1 queue in CSIM for Java. The example is a
Java program named App. You will need to import the following files for this example:

import com.mesquite.csim.*;
import com.mesquite.csim.Process;
import com.mesquite.csim.file.Files;
import java.io.*;

Getting Started with CSIM for Java – For Java Programmers Page 2

The class App includes the required main() method; App extends the Model class, which is the
basis for each CSIM for Java model. In this example, we set up a PrintStream, and assign the
CSIM for Java output to this file. The run method for App uses the start method, to invoke
the first process in the model. By convention, this process is named sim. The App.start()
method should be called only one time per invocation of the App object.

The code for the App class is as follows:
public class App extends Model {
 public static void main(String args[]) {
 App model = new App();
 m_s = Files.Setfile("App.out");
 model.setOutputStream(m_s);
 model.run();
 model.report();
 }
 public App() {
 super("App");
 }
 public void run() {
 start(new Sim());
 }

 private static final double simTime = 10000.0;
 private static final double iarTime = 2.0;
 private static final double srvTime = 1.0;
 private FCFSFacility m_fac;
 private static PrintStream m_s;

// processes (see below)

}

CSIM for Java uses Java threads as processes. Most of the details of dealing with threads and
threadGroups are handled by the model class and the Process class.

The variables and constants for this model include the model parameters (simTime, iarTime
and srvTime) plus the declarations for the facility and the PrintStream objects.

The remainder of the model consists of three processes:

• Sim – controls the execution of the model

• Gen – generates the arriving customers (jobs), and

• Job – represents the individual entities “using” the server at the facility.

The Sim process appears as follows:
 private class Sim extends Process {
 public Sim() {
 super("Sim");

Getting Started with CSIM for Java – For Java Programmers Page 3

 }
 public void run() {
 m_fac = new FCFSFacility("fac", 1);
 add(new Gen());
 hold(simTime);
 }
 }

The constructor calls the Process constructor using the super() statement. The run method is
called by the thread package when the thread begins execution. In this example, the Sim
method instantiates the facility, invokes the Gen process (using the add() statement) and holds
for the duration of the model (hold(simTime)). The hold(t) statement allows t units of
simulated time to pass for the process executing the statement. While one process is in a
hold state, other processes are “executing”. Hold statements specify the management of
simulated time in the model. Notice that in CSIM for Java, the scheduling discipline for the
facility is specified by the type of the facility. In this example, the scheduling discipline for
m_fac is “first come, first served” (FCFS).

The Gen process appears as follows:
 private class Gen extends Process {
 public Gen() {
 super("Gen");
 }
 public void run() {
 while(true) {
 add(new Job());
 hold(rand.exponential(iarTime));
 }
 }
 }

In the Gen process, the run method executes “forever” (really until the model terminates).
During each iteration of the While(true)-loop, the Gen process invokes a Job process and
then holds for an interval of time specified by the rand.exponential(iarTime) function. Every
time this function is called, a different value is returned. The values of this particular
random number function appear to be drawn from a negative exponential probability
distribution with mean iarTime.

The Job process appears as follows:
 private class Job extends Process {
 public Job() {
 super("Job");
 }
 public void run() {
 m_fac.use(rand.exponential(srvTime));
 }
 }

Getting Started with CSIM for Java – For Java Programmers Page 4

In the Job process, the run method calls the use() method for the m_fac object. The use(t)
method implements the activities of the customer using the server as described above. In
more detail, the m_fac.use(t) method performs the following actions:

• Test the status of the server. If the server is idle, the server is assigned to this instance of
the Job process and delays (holds) for an interval of time (the service interval). At the end
of this service interval, the server is released (made idle again). The queue of waiting
processes is checked to see if another process is waiting to gain use of the server.

• If the server is busy, the process is placed in the queue of waiting processes and
suspended. When this process gets to the first position in the queue of waiting processes
(the head of the queue), it will be given use of the server once the server is available (e.g.
when it is released by another instance of the job process).

• The rand.exponential(srvTime) argument generates a value which will be the service interval.
These intervals appear to be drawn from a negative exponential probability distribution
with mean specified by the constant srvTime.

The output for this model is generated when the model.report() method is called:

 CSIM/Java Simulation Report

 March 27, 2005 5:05:42 PM CST

 Ending Simulation time: 10000.000
 Elapsed Simulation time: 10000.000
 Execution (CPU) time: 0.831

FACILITY SUMMARY

facility service service through- queue response compl
name disc time util. put length time count
--
fac fcfs 1.00954 0.512 0.50690 1.02003 2.01229 5069

A few notes about this CSIM for Java model:

• A CSIM for Java process extends the Process class. There can be multiple Process objects
active at the same time. Parallel execution of these processes is simulated by these active
processes.

• Simulated time passes when processes execute hold(t) statements.

• When an active process invokes another process (using the add method), the newly
invoked process is set up and made ready to execute “now” in simulated time, and the
active (invoking) process continues execution.

• Processes become active when some other process suspends itself. A process suspends
itself when it executes a hold(t) statement or when it performs an action that could cause
it to “wait” for another process to release a server.

• A process terminates when its run method ends.

Getting Started with CSIM for Java – For Java Programmers Page 5

• Simulated time advances in unequal increments. The runtime environment maintains a
list of processes that will become active at some point in the future. The simulated clock
advances to each of these process activation points.

• The use(t) method, for the FCFSFacility class, is a “macro” operation, based on the
reserve() method, the hold(t), method and the release() method.

• The FCFSFacility automatically collects statistics on the use of the facility and its server
by the sequence of Job processes. These statistics are reported by the model.report()
method:

o service time – average of the sequence of service intervals

o util – the percentage of the elapsed time that the server is busy

o throughput – number of jobs completed per unit time

o queue length – the average number of processes either waiting to gain access to the
server or that are using the server

o response time – the average amount that each process spends at the facility (both
waiting to gain access the server and using the server)

o compl count – the number of departures of completed jobs

The complete listing of the App module is as follows:

// Generic application: App.java

import com.mesquite.csim.*;
import com.mesquite.csim.Process;
import com.mesquite.csim.file.Files;
import java.io.*;

public class App extends Model {
 public static void main(String args[]) {
 App model = new App();
 m_s = Files.Setfile("App.out");
 model.setOutputStream(m_s);
 model.run();
 model.report();
 }
 public App() {
 super("App");
 }
 public void run() {
 start(new Sim());
 }

 private static final double simTime = 10000.0;
 private static final double iarTime = 2.0;
 private static final double srvTime = 1.0;
 private FCFSFacility m_fac;
 private static PrintStream m_s;

Getting Started with CSIM for Java – For Java Programmers Page 6

 private class Sim extends Process {
 public Sim() {
 super("Sim");
 }
 public void run() {
 m_fac = new FCFSFacility("fac", 1);
 add(new Gen());
 hold(simTime);
 }
 }

 private class Gen extends Process {
 public Gen() {
 super("Gen");
 }
 public void run() {
 while(true) {
 add(new Job());
 hold(rand.exponential(iarTime));
 }
 }
 }

 private class Job extends Process {
 public Job() {
 super("Job");
 }
 public void run() {
 m_fac.use(rand.exponential(srvTime));
 }
 }

}

Other CSIM for Java Features

CSIM for Java also includes a set of simulated resources:

• Single server and multi-server facilities

• Storages, and

• Buffers.

In addition, there are events, to synchronize the actions of processes, and mailboxes, to
implement interprocess communication.

CSIM also includes objects to collect statistics, such as tables, qtables, meters and boxes. These
objects can have histograms and confidence intervals.

And, there are several different functions for generating values from probability
distributions. All of these features are described in detail in the CSIM for Java User’s Guide.

CSIM for Java is distributed as a Java archive (jar) file. When a module is compiled with this
jar file, the resulting class can be executed to yield the outputs as described.

CSIM 19 is a trademark of Mesquite Software. Java is a registered trademark of Sun Microsystems, Inc.

