

Getting Started:
CSIM 20 Simulation Engine
(C++ Version)

Mesquite Software, Inc.
8500 N. Mopac, #825

Austin, TX 78759
(512) 338-9153

info@mesquite.com
www.mesquite.com

 ii

Mesquite is a federally registered trademark

Mesquite Software, Inc.

 Introduction to CSIM 20 for C++ Programmers

 1

Table of Contents

Table of Contents 1

Introduction to CSIM 20 for C++ Programmers 2

Introduction .. 2

Example ... 2

CSIM Objects ... 10

CSIM 20 Tutorial (C++ Version) 13

Introduction .. 13

Processes .. 14

Facilities ... 16

Storages... 20

Buffers.. 23

Events .. 25

Mailboxes ... 28

Tables and Qtables.. 31

Meters and Boxes .. 35

Confidence Intervals .. 38

Run Length Control.. 39

Process Classes .. 41

Random Numbers and Streams .. 42

Other Features... 45

Summary.. 47

Introduction to CSIM 20 for C++ Programmers

 2

Introduction to CSIM 20 for C++ Programmers

Introduction

CSIM 20 is a library of routines, for use with C or C++ programs,
which allows you to create process-oriented, discrete-event
simulation models. This guide leads you through a simple model
which uses the CSIM 20 routines. It closes with a brief discussion of
the CSIM+ objects used to implement more complex models.

Example

The most basic simulation model is a single server and queue with
arriving customers. With certain restrictions, this is the well-known
M/M/1 queue. In the CSIM 20 version of this model, there is a facility
consisting of a single server and a single queue. In addition, there is
a source of customers. As a customer arrives, it either seizes (uses)
the server if it is free (not in use) or it joins a queue of waiting
customers if the server is already busy (in use). When one customer
leaves the server, the next customer in the queue begins to use the
server.

The key parameters in such a model are:

 The intervals of time between customer arrivals

 The intervals of server usage

+ Copyright by Microelectronics and Computer Technology Corporation, 1987 - 1994

 Introduction to CSIM 20 for C++ Programmers

 3

The results of a study of such a model are:

 The average customer response time (time of arrival to time of
departure)

 The customer throughput rate (customers served per unit time)

 The server utilization (percentage of elapsed time that the server
is busy)

 The average queue length (number of customers at the facility)

server

queue

arriving
customer

departing
customer

Figure 1: A Single Server Queue

Introduction to CSIM 20 for C++ Programmers

 4

A CSIM 20 program in C++ to model this simple system is as
follows:

/*this CSIM program simulates an M/M/1 service center*/

#include <cpp.h> /*include the CSIM C++ header file*/

facility *f; /*the service center*/

extern “C” void sim() /*sim process*/
{
 create("sim"); /*make this a process*/
 f = new facility("f"); /*create the service center - f*/
 while(simtime() < 5000.0) { /*loop until end of simulation*/
 hold(exponential(1.0)); /*delay between customer arrivals*/
 customer(); /*generate new customer*/
 }
 report(); /*produce statistics report*/
}

void customer()
{
 create("customer"); /*make this a process*/
 f->use(exponential(0.5)); /*obtain needed amount of service*/
}

 Introduction to CSIM 20 for C++ Programmers

 5

The CSIM output for this example is as follows:

CSIM Simulation Report (Version 20 for MSVC++)

 Mon May 13 13:42:39 1996

 Ending simulation time: 10001.909
 Elapsed simulation time: 10001.909
 CPU time used (seconds): 0.490

FACILITY SUMMARY

facility service service through- queue response compl
name disc time util. put length time count

f fcfs 1.00954 0.512 0.50680 1.01983 2.01229 5069

This example shows most of the important features of a CSIM
model:

1. In this example, there are two processes:

a. The base "sim" process, which initializes the model and
generates the customer arrivals at varying interarrival
intervals, and

b. The "customer" process, which mimics the behavior of a
customer of the facility, f. Notice that there can be several
customers (instances of the customer process) "active" at
the same time: one using the server and others arriving
and waiting in the queue.

2. A CSIM process is a C++ procedure that executes the "create"
statement. Executing a create statement does two things:

a. Establishes the procedure which executes the statement
as an independent, ready-to-run process, and

b. Returns control to the calling process.

Introduction to CSIM 20 for C++ Programmers

 6

3. A facility is declared with the “facility" statement and is
initialized by the "new facility()" function.

4. The CSIM variable "clock" contains the current simulated time
(the value of the simulated clock). In CSIM, time is a double
precision, floating point value.

5. The "hold" statement causes time to pass for the process
executing the statement; in the example, the "hold(exponential
(1.0));" statement models the intervals of time between
customer arrivals.

6. In many simulation models, it is appropriate to specify
sequences of time intervals with probability distributions. In
the M/M/1 queue, the interarrival intervals and the service
intervals are "sampled" from negative exponential
distributions. In CSIM, the exponential() function gives such
samples.

7. Use of the facility is modeled by the "f->use(exponential (0.0))
statement (in this case, the facility being used is f).

8. To elaborate on an earlier point, there may be multiple
instances of the customer process active and competing for
use of the server at the same time. Modeling parallel activities
is a major feature of process-oriented models such as those
implemented with CSIM.

 Introduction to CSIM 20 for C++ Programmers

 7

The interactions among the processes in a model can be seen by
looking at an activity (debug) trace that is generated by CSIM during
the execution of a model (a trace is generated only upon request). A
segment of the activity trace for the sample model is shown below:

 time process .id priority status
0.000 sim 1 1 create sim 1
0.000 sim 1 1 join class default
0.000 sim 1 1 facility f with 1 server
0.000 sim 1 1 sched proc: t = 0.000, id = 2
0.000 sim 1 1 create customer 2
0.000 customer 2 1 join class default
0.000 sim 1 1 hold 1.332
0.000 sim 1 1 sched proc: t = 1.332, id = 1
0.000 customer 2 1 use facility f, t = 1.739
0.000 customer 2 1 reserve f
0.000 customer 2 1 hold 1.739
0.000 customer 2 1 sched proc: t = 1.739, id = 2
1.332 sim 1 1 sched proc: t = 0.000, id = 3
1.332 sim 1 1 create customer 3
1.332 customer 3 1 join class default
1.332 sim 1 1 hold 2.351
1.332 sim 1 1 sched proc: t = 2.351, id = 1
1.332 customer 3 1 use facility f, t = 0.626
1.332 customer 3 1 dequeue facility f
1.739 customer 2 1 terminate
1.739 customer 3 1 hold 0.626
1.739 customer 3 1 sched proc: t = 0.626, id = 3
2.365 customer 3 1 release f
2.365 customer 3 1 terminate

Introduction to CSIM 20 for C++ Programmers

 8

In this activity trace segment, we can see the following sequence of
simulated activities:

 The base (first) process, sim, starts at time 0.000 by initializing
the facility (named f), starts the first customer process and
then does a hold of 1.332 time units (the interval until the next
customer arrival which is generated by using a negative
exponential distribution with a mean of 2.0). Since this
example doesn’t divide its processes into different classes for
reporting purposes, all processes are shown as joining the
default class. This example also does not assign explicit
priorities to processes, so they all default to priority 1.

 Because sim has "suspended" execution, the first customer
process can begin execution, also at time 0.000 (the id of this
instance of customer is 2, so we will refer to it as customer.2).
Upon arrival, customer.2 executes a "use", which reserves the
facility f. Since f is free, customer.2 gets it and then does a
hold, simulating its service interval of 1.739 time units
(generated by using a negative exponential distribution with a
mean of 1.0).

 At time 1.332, the hold for sim expires, so sim resumes
execution and generates the arrival of the next customer,
customer.3. sim then does a hold of 2.351 units of time, the
interval until the next customer arrival.

 Customer.3 begins execution at 1.332. It tries to use f, but f is
busy (it is being held by customer.2), so customer.3 must wait
until customer.2 completes its service interval.

 At time 1.739, customer.2 finishes its service interval, so it
releases f. This frees f for use by the next customer in the
queue of waiting customers. Since customer.2 is finished, it
terminates. Termination for a process is automatic when the
process (procedure) does a normal procedure exit.

 Customer.3 is able to proceed (its reserve has succeeded), so
does a hold for its service interval (0.626 time units).

 Introduction to CSIM 20 for C++ Programmers

 9

 At time 2.365, customer.3 completes its service interval,
releases f and terminates.

 Sim is still holding, simulating the interval until the arrival of the
next customer.

 The model will continue this sequence of activities (customer
arrivals, requesting the facility, etc.) until the value of clock
exceeds 10000.0 (the length of the simulated experiment
specified by the define constant SIM_TIME). When the
experiment finishes, the CSIM report is printed (by the report()
procedure) and sim exits, causing the program to end.

The CSIM report in this example gives a statistical summary of the
usage of the f facility by the 5069 customer processes that
completed service during the 10001.909 simulated time units
covered by the experiment. In the report, we can see the following:

 The mean service interval at the facility is 1.010 time units.
The fact that it is not 1.0 results from the use of the samples
from the negative exponential probability distribution with
mean 1.0.

 The utilization of the facility is 0.512. This is the percentage of
the elapsed time during which the server at f was busy (in
use).

 The throughput rate is 0.5 customers per unit time.

 The mean queue length is 1.020. This is the average number
of customers at the facility, including both customers at the
server and in the queue of waiting customers.

 The average response time experienced by customers at the
facility (resp) is 2.012 time units. The response time includes
both time in the queue and time at the server.

 The number of completed customers at the facility is 5069.

Introduction to CSIM 20 for C++ Programmers

 10

CSIM Objects

CSIM provides a complete set of objects that can be used to
construct models of almost any kind of system, at any level of
complexity and detail. The objects supported by CSIM are:

 Process - used to model elements of the workload, clients and
servers, or any other active components of the system

 Facility - used to model resources that are seized (used) by
processes

 Storage - used to model resources that are partially allocated
to processes

 Buffer - used to model buffers with finite capacity

 Event - used to synchronize and control interactions between
processes

 Mailbox - used to exchange information between processes

 Tables, Qtables, Meters, and Boxes - used to collect explicit
statistics (note: statistics on usage of facilities and storage
blocks are collected automatically)

 Process class - used to segregate facility usage statistics

 Stream of random numbers - used to generate multiple
streams of samples from specified probability distributions

These objects can be created and used by the program to give
accurate and detailed insights into the structure, organization and
behavior of complex systems.

 Introduction to CSIM 20 for C++ Programmers

 11

For more information on how to do this and how to derive many
benefits from building and using CSIM models, contact Mesquite
Software, Inc.

 CSIM 20 Tutorial (C++ Version)

 13

CSIM 20 Tutorial (C++ Version)

Introduction

This section gives an overview of all of the important objects and
other features of the CSIM 20 library. A CSIM+ model is a C++ (or
C) program that uses the functions and procedures in the CSIM 20
library to implement process-oriented, discrete-event simulation
models. Each model will mimic the behavior of the system being
modeled. Using a model helps the user analyze the behavior of a
system and can lead to improvements in the operation and
performance of that system.

It is assumed that the reader of this document has a working
knowledge of the C++ programming language and is familiar with the
concepts of discrete-event simulation models.

Note: There is also a version of CSIM for Java. With this version,
programmers have access to all of the functionality of CSIM from
models written in Java.

+ Copyright by Microelectronics and Computer Technology Corporation, 1987 - 1994

CSIM 20 Tutorial (C++ Version)

 14

Processes

A CSIM process is used to model the active elements of a system.
These could include elements of the workload, clients and servers
found in the system, and other components that are active parts of
the system model. In CSIM, a process is a C++ procedure that
executes the "create()" statement. Every time a "create" statement
is executed, a new instance of that process is created. Each
instance of a CSIM process has the following attributes:

 Its own internal state (local variables and registers)

 A unique process id

 A process priority

 One of the following external states:

- Executing

- Waiting-to-execute

- Holding (while some period of time elapses)

- Waiting (for some event to occur)

CSIM processes should not be confused with processes in the
platform operating system (such as UNIX) or operating system
supported threads (such as lightweight threads in SunOS). The
concepts are similar, but the implementations are separate.

It is very important to understand the flow of control that is used by
CSIM processes. When a newly called procedure executes a
create() statement, the following actions occur:

1. A process control block (pcb) for the new procedure (really the
new process) is created and put on the “next event list”, and

 CSIM 20 Tutorial (C++ Version)

 15

2. Control is returned immediately to the process that invoked
this new process.

So, after a new process is “called”, the old process is still executing
and the new process will execute only after the current (old) process
“gives up” (e,g., does a hold or a statement which results in a wait).

For example, after this CSIM code fragment has executed:
...
for(i = 0; I < 100; I++)
 customer(i);
hold(1000.0);
...

100 instances of the process named “customer” will be created, but
none of them will start to execute until the calling process executes
the hold statement.

CSIM 20 Tutorial (C++ Version)

 16

Facilities

Facilities are those objects that processes “use” or occupy. They
can be defined as:

 A single server facility (can only service one process at a time)

 A multi-server facility (can service n processes at once, where n
is the number of servers defined for the facility)

 An array of single server facilities

Each facility is given a name, which is used solely for output (reports,
status, and traces).

By default, a facility services processes in priority order. Where
multiple processes have the same priority, they will be served on a
first-come-first-served basis. A number of other service disciplines
can be specified.

 CSIM 20 Tutorial (C++ Version)

 17

The following examples show how a facility can be used from within
a process.

 To declare, initialize, and use a facility with a single queue and a
single server:

facility *single_server; /* declare facility variable/
...
single_server = new facility("sngle srvr"); /* initialize facility named sngle srvr*/
...
single_server->use(service_time); /* use facility for length of service_time*/
...
single_server->reserve(); /* reserve (use) facility */
...
hold(service_time);
...
single_server->release(); /* release the facility */
...

The "use()" statement and the sequence "reserve(), hold(),
release()" behave in similar ways; the only difference is when (in
simulated time) the service_time variable is evaluated. By
convention, the "use()" statement is used when the process will be
"using" the facility, while the "reserve" statement is used when the
process will acquire exclusive use of the facility and then do
something other than a "hold" statement.

Processes are ranked in the queue of waiting processes in order of
their process priorities, with the highest priority at the head of the list.
In the case of equal priorities, the process doing the earliest reserve
is ahead of processes doing reserves at later points in time. If all
reserving processes have the same priorities, then the resulting
scheduling policy (discipline) is first-come, first-served (or FIFO - first
in, first out).

CSIM 20 Tutorial (C++ Version)

 18

 To declare, initialize, and use a facility with a single queue and
three servers:

const long NUM_SRVRS = 3; /* set number of servers to 3 */
facility_ms *multi_server; /* declare facility_ms object ptr */
...
multi_server = new facility_ms("multi srvr", NUM_SRVRS);/*initialize srvr with 3
srvrs*/
...
multi_server->use(service_time); /*use facility for length of service_time*/
....

 To declare, initialize, and use an array of ten single server
facilities:

const long NUM_FACS = 10; /*set number of facilities in array to 10 */
facility_set *facs; /* declare facility array */
...
facs = new facility_set("facs", NUM_FACS); /*initialize set of 10 facilities */
i = random(0, NUM_FACS-1); /*select the facility to be used next*/
(*facs)[i].use(service_time); /*use facility[i] for length of service_time*/

 To reserve a facility only if it can be obtained within a given
length of time:

const double TIME_OUT = 5.0; /*set length of time to wait for facility*/
.....
st = single_server->timed_reserve(TIME_OUT); /*reserve facility in 5 time units*/
if(st != TIMED_OUT) { /*if facility was, in fact, reserved in time*/
 hold(service_time); /*simulate servicing customer for service_time*/
 single_server->release(); /*release facility since service is now complete*/
} else { /*request timed out */
....
 }

 CSIM 20 Tutorial (C++ Version)

 19

 To declare, initialize, and use a synchronous facility (a
synchronous facility is one in which reserves are granted only at
regular points in time (called clock ticks)):

const double PHASE = 0.5; /*set time to onset of first clock cycle to 0.5 */
const double PERIOD = 1.0; /*set length of clock cycle to 1 time unit*/
faciolity *bus; /*declare facility variable bus */
...
bus = new facility("bus"); /*initialize facility and name it bus */
bus->synchronous(PHASE, PERIOD); /*make the facility synchronous */
...
bus->reserve(); /*reserve the facility */
...
bus->release(); /*release facility since process no longer needs it*/
...

 To define the preempt-resume service discipline for a facility:

FACILITY cpu; /*declare facility variable cpu */
...
cpu = fnew acility("cpu"); /*initialize facility and name it cpu */
cpu->set_servicefunc(pre_res) /*set service protocol to preempt-resume*/
...
priority = 100; /*make process high priority */
cpu->use(service_time); /*preempt lower priority process and use facility*/
...

It is important to notice that when scheduling disciplines other than
first-come, first-served are in use at a facility, then the "use()"
method is the only way to make use of the facility. This means that a
process cannot reserve such a facility and then do something other
than use that facility.

CSIM 20 Tutorial (C++ Version)

 20

Storages

A CSIM storage is a resource that can be partially allocated to a
requesting process. A storage consists of a counter (to indicate the
amount of available storage) and a queue for processes waiting to
receive their requested allocation. A storage set is an array of these
basic storages.

A storage can be designated to be synchronous. In a synchronous
storage, each allocate is delayed until the onset of the next clock
cycle.

Each storage must be given a name, which is used solely for output
(reports, status and traces).

The following examples show how storage can be used from within a
process.

 To declare, initialize, and use a storage:

const long STORE_AMT = 100; /*set amount of storage to 100 units */
storage *mem; /*declare storage variable mem */
...
mem = new storage("mem", STORE_AMT);/*initialize storage named mem with 100 units */
...
amt = random(1, STORE_AMT); /*decide how much storage to allocate this time */
mem->alloc(amt); /*get amount of storage decided upon*/
...
mem->dealloc(amt); /* release storage which is no longer needed */
...

 CSIM 20 Tutorial (C++ Version)

 21

 To declare, initialize, and use an array of five storage blocks:

const long NUM_STORES = 5; /*set number of storage blocks in array*/
const long STORE_AMT = 100; /*set amount of storage in each storage block*/
storage _set *mems; /*declare storage block array*/
...
mems = new storage_set("mem", STORE_AMT, NUM_STORES); /*initialize stor mem with 100
units per block*/
...
amt = random(1, STORE_AMT); /*decide how much storage to allocate */
(*mems)[3].alloc(amt); /*get storage from the fourth storage block*/
...
(*mems)[3].dealloc(amt); /*release storage which is no longer needed*/
....

 To get storage only if it can be obtained within a given length of
time:

...
st = mem->timed_alloc(amt, 1.0); /*get storage if possible within 1 time unit */
if(st != TIMED_OUT) { /*if storage was gotten within the time limit */
...
 mem->dealloc(amt); /*release storage which is no longer needed */
}
else { /* allocate timed out */
...
}

CSIM 20 Tutorial (C++ Version)

 22

 To declare, initialize, and use storage synchronously (allocations
will take place only at regular points in time (called clock ticks)).

const double PHASE = 0.5; /*set time to onset of first clock cycle to 0.5*/
const double PERIOD = 1.0; /*set length of clock cycle to 1 time unit*/
const long STORE_AMT = 100; /*set amount of storage in block to 100 units*/
storage *mem; /*declare storage variable mem */
mem = new storage("mem", STORE_AMT);/*initialize storage named mem with 100 units*/
mem->synchronous(PHASE, PERIOD); /*make storage allocations synchronous*/
...
mem->alloc(5); /*get 5 units of storage for this process */
...
mem->dealloc(5); /*release storage which is no longer needed*/

...

 CSIM 20 Tutorial (C++ Version)

 23

Buffers

A CSIM buffer is a resource that can be partially allocated to a
requesting process. A buffer consists of a counter (to indicate the
number of slots, represented as tokens, in the buffer) and a two
queues, one for processes waiting to get tokens from the buffer, and
one for processes waiting for space to put (or return) tokens to the
buffer.

Each buffer must be given a name, which is solely used for output
(reports, status and traces).

The following examples show how a buffer can be used from within a
process.

 To declare, initialize and use a buffer

const long BUFFER_AMT = 100;
buffer *buf;

buff = new buffer(“buff”, BUFFER_AMT);

amt – random(1, BUFFER_AMT);
buff->get(amt);
…
buff->put(amt);

CSIM 20 Tutorial (C++ Version)

 24

 To get space in a buffer only if it can be obtained with a given
length of time:

st = buff->timed_get(amt, 1.0);
if(st != TIMED_OUT) {
 …
 buff->put(amt);
} else {
…
}

 CSIM 20 Tutorial (C++ Version)

 25

Events

Events are used to synchronize and control interactions between
different processes. A CSIM event has two states: occurred (OCC)
and not occurred (NOT_OCC). A process can either wait for an
event to occur or queue on the event.

If a process "waits" for an event:

 If the event is in the not occurred state, the process is
suspended and placed in a queue of processes waiting for the
event to happen (occur). When some other process does a "set"
operation on that event, all of the waiting processes are re-
activated (allowed to proceed) and the event is reset to not
occurred.

 If the event is in the occurred state, the process continues to
execute and the event state is changed to not occurred.

If a process queues on an event:

 If the event is in the not occurred state, the process, is
suspended and placed in a queue of processes queued for the
event to happen (occur). When some other process does a "set"
operation on that event, only the first queued process is re-
activated (allowed to proceed) and the event is reset to not
occurred.

 If the event is in the occurred state, and there are no other
processes queued on that event, the process continues to
execute and the event state is changed to not occurred.

Events can be defined as either an individual event or an array of
events.

CSIM 20 Tutorial (C++ Version)

 26

Each event must be given a name, which is used solely for output
(status and traces). An event and an event_set can be monitored, to
collect and then report statistics on the use of the event(s) by
processes.

The following examples show how events can be used from within a
process.

 To declare, initialize, and use an event:

event *ev; /*declare event variable ev */
...
ev = new event("ev"); /*initialize an event named ev */
....
ev->wait(); /*wait for event to occur before proceeding */
...
ev->queue(); /*wait for event to occur, for processes to respond before proceeding*/
ev->set(); /*indicate that an event has occurred */
...

 To monitor an event, to collect statistics on its use

ev->monitor(); /* invoke statics collection for ev */

 To declare, initialize, and use an array of twenty-five events:

const long NUM_EVENTS = 25; /*set number of events in array */
event_set *ev_arr; /*declare event array */
....
ev_arr = new event_set("ev arr", NUM_EVENTS); /*initialize array of 25 events*/
....
(*ev_arr)[5].wait(); /*wait for sixth event to occur before proceeding */
...
(*ev_arr)[5].set(); /*indicate that sixth event has occurred*/
...

 To wait or queue for any event in an array of events to happen:

i = ev_arr -.wait_any(); /*i is index of event which occurred */
 OR
i = ev_arr->queue_any(); /*i is index of event which occurred */
...
....

 CSIM 20 Tutorial (C++ Version)

 27

 To wait for an event only if it occurs within a given length of time:

...
st = ev->timed_wait(50.0); /*wait for a maximum of 50 time units */
if(st ! = TIMED_OUT) { /*did not timed out */

.....
}

CSIM 20 Tutorial (C++ Version)

 28

Mailboxes

A mailbox allows for the synchronous exchange of data between
CSIM processes. Any process may send a message to any mailbox,
and any process may attempt to receive a message from any
mailbox.

A mailbox is comprised of two FIFO queues: a queue of unreceived
messages and a queue of waiting processes. At least one of the
queues will be empty at any time. When a process sends a
message, the message is given to a waiting process (if one exists) or
it is placed in the message queue. When a process attempts to
receive a message, it is either given a message from the message
queue (if one exists) or it is added to the queue of waiting processes.

A message can be either a single integer or a pointer to some other
data object. If a process sends a pointer, it is the responsibility of
that process to maintain the integrity of the referenced data until it is
received and processed.

Each mailbox must be given a name, which is used solely for output
(status and traces).

The following examples show how mailboxes can be used from
within a process.

 To declare, initialize, and use a mailbox:

mailbox *mb; /*declare mailbox variable mb */

long msg_r, msg_s; /*message variables */
...

 CSIM 20 Tutorial (C++ Version)

 29

mb = new mailbox("mb"); /*initialize a mailbox named mb */
...
mb->receive(&&msg_r); /*receive message (in msg_r) from mailbox mb */
...
mb->send(mb, msg_s); /*send message in msg_s to mailbox mb */
...

A message is a single variable. It can be either an integer or a
pointer to a (message) structure.

 To monitor a mailbox, to collect statistics on its use:

mb->monitor();

 To wait for a message only if it comes in within a given length of
time:

...
st = mb->timed_receive(&msg_r, 100.0); /*wait for a maximum of 100 time units */
if(st ! = TIMED_OUT) { /*if not timed out */
....
}

 To declare, initialize and use an array of twenty-five mailboxes:

const long NUM_MBOXES = 25;
mailbox_set *mbox_arr;
. . . .
mbox_arr = new mailbox_set(“mbox set”, NUM_MBOXES);

 To receive a message from any mailbox in an array of
mailboxes:

i = mbox_arr->receive_any(&msg);

 To send a message to a mailbox which is member of an array of
mailboxes:

(*mbox_arr)[3].send(msg);

CSIM 20 Tutorial (C++ Version)

 30

 To receive a message from any mailbox in an array of mailboxes
within a specified interval of time:

st = mbox_arr->timed_receive_any(&msg, 1.0);
if(st != TIMED_OUT) {
 // process message
} else {
 // deal with time out
}

 To send a message and wait until the message is received:

mb->synchronous_send(msg);

 To send a message and wait until the message is received
within a specified interval of time:

st = mb->timed_synchornous_send(msg, 1.0);
if(st == != TIMED_OUT) {
 // message received OK
} else {
 // message not received
}

 CSIM 20 Tutorial (C++ Version)

 31

Tables and Qtables

CSIM automatically collects some usage statistics. In order to allow
the user to collect other statistics describing different aspects of the
behavior of the system, CSIM supplies several objects:

 Table - collects floating point values and then gives a
statistical summary consisting of, as shown:

TABLE 1: table

 minimum 0.000016 mean 1.000040
 maximum 10.336942 variance 0.999862
 range 10.336926 standard deviation 0.999931
 observations 10000 coefficient of var 0.999890

 A histogram can be specified for a table in order to obtain
more detailed information about the recorded values. A
histogram has a user-defined number of intervals and
minimum and maximum values. The histogram will actually
create two more intervals than specified, one for values less
than the minimum and one for values greater than or equal to
the maximum. A histogram report consists of a line of output
for each interval, as shown:

CSIM 20 Tutorial (C++ Version)

 32

 cumulative
 lower limit frequency proportion proportion

 0.00000 6322 0.632200 0.632200 ********************
 1.00000 2288 0.228800 0.861000 *******
 2.00000 878 0.087800 0.948800 ***
 3.00000 322 0.032200 0.981000 *
 4.00000 112 0.011200 0.992200 .
 5.00000 48 0.004800 0.997000 .
 6.00000 22 0.002200 0.999200 .
 7.00000 5 0.000500 0.999700 .
 8.00000 1 0.000100 0.999800 .
 9.00000 1 0.000100 0.999900 .
 >= 10.00000 1 0.000100 1.000000 .

 Confidence intervals can also be specified for a table (see
page 36).

 Qtable - tracks state changes (for example the number of
processes in a queue). The qtable reports on the following
items:

QTABLE 1: qtable

 initial 0 minimum 0 mean 0.795029
 final 0 maximum 7 variance 0.802270
 entries 10000 range 7 standard deviation 0.895696
 exits 10000 coeff of variation 1.126620

 CSIM 20 Tutorial (C++ Version)

 33

 A histogram can be specified for a qtable. It gives more detail
on the time spent in each state.

 Confidence intervals can be specified for a qtable (see page
36).

 cumulative
 number total time proportion proportion

 0 3523.17812 0.352291 0.352291 **************
 1 5078.27616 0.507790 0.860081 ********************
 2 1306.88320 0.130679 0.990759 *****
 3 90.75115 0.009074 0.999834 .
 4 1.66151 0.000166 1.000000 .

Tables can be defined to be either permanent or non-permanent. A
permanent table is not affected by requests to reset statistics or
rerun the model, and can thus be used to gather data across multiple
runs of a model.

Each table must be given a name, which is used solely for output
(reports, status, and traces). The tables can be printed using various
report statements.

CSIM 20 Tutorial (C++ Version)

 34

The following examples show how tables and qtables can be used:

 To declare, initialize, and use a non-permanent table with a
histogram:

table *tbl; /*declare table variable tbl */
...
tbl = new table("tbl"); /*initialize a table named tbl */
tbl->add_histogram(10,0.0,20.0); /*add a historgram to a table named tbl */
...
t = clock; /*get current time */
single_server->reserve(); /*reserve a single server facility */
 x = clock - t; /*calculate time spent on queue (delay interval)*/
 tbl->tabulate(x); /*record delay interval in table */
...

 To declare, initialize, and use a non-permanent qtable with a
histogram:

qtable *qtbl; /*declare queue histogram and table variable hst*/
...
qtbl=qtable(“qtbl”);
qtbl->add_histogram(20,0,20);

qtbl->note_entry(); /*record entry onto queue for facility */
single_server->reserve(); /*reserve a single server facility */
 qtbl->note_exit(); /* record exit from queue for facility */
 hold(exponential(2.5));

 To add confidence intervals to a table and to a qtable:

table_confidence(tbl); /* add confidence interval */
qtable_confidence(qtbl); /* add confidence interval */

 CSIM 20 Tutorial (C++ Version)

 35

Meters and Boxes

Meters are used to gather statistics on the rate at which entities flow
past a point as well as the times between passages. Meters can be
used to measure arrival rates, completion rates, allocation rates, and
interpassage times.

 A meter report gives the following information:

METER 1: meter

 count 10000 rate 0.989904

 interpassage time statistics

 minimum 0.000144 mean 0.999140
 maximum 9.135145 variance 1.010617
 range 9.135002 standard deviation 1.005294
 observations 10000 coefficient of var 1.006159

 Histograms can be added to meters.

 Confidence intervals can also be used with meters.

A box conceptually encloses part or all of a model. This box gathers
statistics on the number of entities in the box and on how much time
they spend in the part of the model delineated by the box. Boxes are
used to gather statistics on queue lengths, response times, and
populations.

CSIM 20 Tutorial (C++ Version)

 36

 A box report gives the following information:

Statistics on elapsed times (see tables):

· minimum, etc.

Statistics on population variation (see qtables):

· initial, etc.

 Histograms can be added to boxes (for both elapsed times
and population).

 Confidence intervals can also be used with boxes (for both
elapsed time and population).

BOX 1: box

 statistics on elapsed times

 minimum 0.000037 mean 0.784577
 maximum 6.498131 variance 0.622643
 range 6.498094 standard deviation 0.789077
 observations 10000 coefficient of var 1.005736

 statistics on population

 initial 0 minimum 0 mean 0.776656
 final 0 maximum 6 variance 0.775737
 entries 10000 range 6 standard deviation 0.880759
 exits 10000 coeff of variation 1.134040

 The following example shows how to declare, initialize, and use
a meter:

meter *mtr; /* declare meter variable m */

mtr = new meter(“mtr”); /* initialize a meter named mtr */

mtr->note_passage(); /* note passage of process */

 CSIM 20 Tutorial (C++ Version)

 37

 The following example shows how to declare, initialize, and then
use a box:

box *b; /* declare box variable b */

b = new box(“b”) /* initialize a box named b */

timestamp = b->enter(); /* note enter box */

b->exit(timestamp); /* note exit */

CSIM 20 Tutorial (C++ Version)

 38

Confidence Intervals

A confidence interval for a statistic is a range of values in which the
true “answer” is believed to lie with a high probability. In a simulation
model, an output, e.g. system response, can be an important statistic
and we would like to calculate a confidence interval for this statistic
so that we can assess its statistical accuracy. In CSIM 20 we can
add confidence interval calculations to tables, qtables, meters, and
boxes.

 The report for a data collection object with confidence intervals is
as shown:

confidence intervals for the mean after 10000 observations

 level confidence interval rel. error

 90 % 1.005900 +/- 0.015530 = [0.990370, 1.021429] 0.015681
 95 % 1.005900 +/- 0.018559 = [0.987341, 1.024458] 0.018796
 98 % 1.005900 +/- 0.022116 = [0.983784, 1.028015] 0.022480

The confidence intervals are calculated for the confidence levels
90%, 95%, and 99%.

Calculating confidence intervals is complicated by the fact that many
commonly collected statistics (e.g., response times) are not
independent. The algorithm used to calculate confidence intervals in
CSIM 20 groups the observations into batches, where the number of
batches depends on the correlation found in the statistic. If a report
is based on an insufficient number of batches, a message appears
(instead of the calculated confidence intervals).

 CSIM 20 Tutorial (C++ Version)

 39

Run Length Control

CSIM 20 provides a mechanism for running a model until a desired
confidence level has been achieved for a specified statistic.
However, it is possible that the model may require an excessive
amount of computing time before the desired confidence level is
achieved, so a maximum CPU time parameter is used to limit the
execution time. The output report makes clear the terminating
condition of the model.

The automatic run length control can be used with tables, qtables,
meters, and boxes.

 To declare, initialize, and use a table with run length control:

main routine (sim):

const double CPU_TIME = 1 000.0;
const double CONF_LEVEL = 0.90;
const double ACCURACY = 0.01;

table *tbl;
extern “C” void sim()
{

 tbl = new table(“tbl”);
 tbl->run_length(ACCURACY, CONF_LEVEL, CPU_TIME);
 ...
 converged.wait()
 report();
}

CSIM 20 Tutorial (C++ Version)

 40

Note: “Converged” is a built-in event that does not need to be
declared or initialized.

 CSIM 20 Tutorial (C++ Version)

 41

Process Classes

In some models, it is convenient to be able to segregate different
instances of a process (or processes) into classes for the purpose of
reporting facility, storage and buffer usage data (and possibly other
statistics). Further information on this can be found in the CSIM
User’s Guide.

CSIM 20 Tutorial (C++ Version)

 42

Random Numbers and Streams

CSIM provides a set of functions that produce samples drawn from
different probability distributions. These are all derived from a
"random number generator." In the standard case, one random
number generator function (one random number stream) is used by
all of the probability distributions. In some cases, it is convenient to
have multiple streams of random numbers, so that each stream
operates in a repeatable manner, even when the structure of the
model is changed. The CSIM object "stream" serves this purpose.

The following example shows how random numbers and streams
can be used:

 To obtain a random number from the standard stream:

const double SERVICE_TIME = 10.0 ;/*declare the mean service time */
float x; /*declare variables to contain random numbers */
...
...
x = exponential(SERVICE_TIME); /* use standard random number stream with a negative
 exponential distribution on a mean of 10.0 */

 CSIM 20 Tutorial (C++ Version)

 43

 To declare, initialize, and use a stream:

const double SERVICE_TIME = 10.0;
stream *s
float x;
s = new stream();

x = s->exponential(SERVICE_TIME);

Successive streams are created with initial values (seeds) that are
100,080 values apart.

The seed of a stream can be changed by using the reseed function.
The current value of the seed can be retrieved using the
stream_state function.

CSIM 20 includes the following built-in random number distribution
functions:

uniform(min, max)
triangular(min, max, mode)
beta(min, max, shape1, shape2)
exponential(mean)
gamma(mean, stddev)
erlang(mean, var)
hyperx(mean, var)
weibull(shape, scale)
normal(mean, stddev)
lognormal(mean, stddev)
cauchy(alpha, beta)
hypoexponential(mean, var)
pareto(a)
zipf(n)
random_int(min, max)
bernoulli(prob_success)
binomial(prob_success, num_trials)
geometric(prob-success)
negative_binomial(success_num, prob_succes)
poisson(mean)

CSIM 20 Tutorial (C++ Version)

 44

CSIM 20 also has the ability to generate random samples from an
empirical distribution defined by a table.

 To initialize and use randomly derived values specified as
follows:

value frequency
1 .30
5 .60
9 .10

double prob[3] = {0.30, 0.60, 0.10};
double value[3] = {1.0, 5.0, 9.0};
double cutoff[4];
long alias[4];
...
setup_empirical(3, prob, cutoff, alias);
...
x = empirical(3, cutoff, alias, value);

Notice that the length of each of the auxiliary arrays, cutoff[] and
alias[], is one greater than the length of each of the parameter
arrays, prob[] and value[].

 CSIM 20 Tutorial (C++ Version)

 45

Other Features

This tutorial has focused on the objects provided in the CSIM 20
library. CSIM 20 also includes many other functions and procedures
that help the CSIM user implement a simulation model:

 Inspector functions that return the state of an object, the number
of customers or messages waiting at the object and other
important information about the object

 Status procedures (for most object types) that print a report on
the status of all objects of that type. This feature can be useful
in debugging a model.

 Report procedures that print summaries of statistics on the
usage of facilities and storage as well summaries based on
tables, histograms, qtables, and qhistograms

 More inspector functions that retrieve a number of items,
including every item provided by CSIM reports, so that
customized reports can be produced

 Routines to help with the management and execution of the
model itself:

 A procedure that resets all of the statistics being gathered,
except for permanent tables, which are never reset.

 A "rerun" procedure that lets a model be destroyed and then
rebuilt, possibly with some different features

 A "debug" event trace can be "turned on,” either by
executing the "trace_on()" procedure or by providing an
input argument when execution of the program is initiated

CSIM 20 Tutorial (C++ Version)

 46

 Functions that allow the user to change the maximum
number of objects that can be active in a model (the
maximums are by object type)

 All of the files generated by the model (output, error and
trace) can be directed to files under program control

A CSIM 20 model can be embedded in another application. The
user just has to provide a main routine that calls "sim."

All of the routines in the CSIM library have been optimized to support
efficient execution of the model. All data structures are dynamically
allocated, so there are no pre-determined limits to the sizes of
models. The library does not have to be recompiled to handle large
models.

 CSIM 20 Tutorial (C++ Version)

 47

Summary

CSIM 20 has been designed to empower C++ programmers who
need to build and use simulation models of complex systems. The
programming approach to model building means that models of
arbitrary levels of complexity and detail can be readily constructed
and verified. CSIM 20 does not embody any preconceived notions
of how simulation models should be constructed (other than using
the process-oriented paradigm).

Analysts and programmers interested in finding out more about
CSIM 20 and how it can be obtained should contact Mesquite
Software, Inc. at www.Mesquite.com.

CSIM 20 Tutorial (C++ Version)

48

